Generalizing a theorem of Richard Brauer

被引:0
|
作者
Im, Bo-Hae [2 ]
Larsen, Michael [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jnt.2008.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There exists a function f : N -> N such that for every positive integer d, every quasi-finite field K and every projective hypersurface X of degree d and dimension >= f (d), the set X (K) is non-empty. This is a special case of a more general result about intersections of hypersurfaces of fixed degree in projective spaces of sufficiently high dimension over fields with finitely generated Galois groups. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3031 / 3036
页数:6
相关论文
共 50 条
  • [41] On an analogue of a Brauer theorem for fusion categories
    Burciu, Sebastian
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03): : 561 - 575
  • [42] A Brauer's theorem and related results
    Bru, Rafael
    Canto, Rafael
    Soto, Ricardo L.
    Urbano, Ana M.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (01): : 312 - 321
  • [43] AN ANALOG OF THE BRAUER-FOWLER THEOREM
    STRUNKOV, SP
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (06) : 141 - 142
  • [44] CARTAN-BRAUER-HUA THEOREM
    TREUR, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1977, 80 (05): : 453 - 454
  • [45] Parametric-vector Versions of the Gerschgorin Theorem and the Brauer Theorem
    Hetmaniok, Edyta
    Pleszczynski, Mariusz
    Rozanski, Michal
    Witula, Roman
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [46] GENERALIZING THE DUALITY THEOREM OF GRAPH EMBEDDINGS
    ABUSBEIH, MZ
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 11 - 23
  • [47] Generalizing the Baer-Kaplansky theorem
    Ivanov, G
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 133 (1-2) : 107 - 115
  • [48] A DENSITY STATEMENT GENERALIZING SCHURS THEOREM
    BERGELSON, V
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) : 338 - 343
  • [49] A game generalizing Hall's Theorem
    Rabern, Landon
    DISCRETE MATHEMATICS, 2014, 320 : 87 - 91
  • [50] Generalizing the Coleman-Hill Theorem
    Kao, H.-C.
    Modern Physics Letter A, 12 (11):