Generalizing a theorem of Richard Brauer

被引:0
|
作者
Im, Bo-Hae [2 ]
Larsen, Michael [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jnt.2008.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There exists a function f : N -> N such that for every positive integer d, every quasi-finite field K and every projective hypersurface X of degree d and dimension >= f (d), the set X (K) is non-empty. This is a special case of a more general result about intersections of hypersurfaces of fixed degree in projective spaces of sufficiently high dimension over fields with finitely generated Galois groups. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3031 / 3036
页数:6
相关论文
共 50 条