Consistency Meets Inconsistency: A Unified Graph Learning Framework for Multi-view Clustering

被引:100
|
作者
Liang, Youwei [1 ]
Huang, Dong [1 ]
Wang, Chang-Dong [2 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
关键词
Multi-view graph learning; Multi-view clustering; Graph fusion; Consistency; Inconsistency;
D O I
10.1109/ICDM.2019.00148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Learning has emerged as a promising technique for multi-view clustering, and has recently attracted lots of attention due to its capability of adaptively learning a unified and probably better graph from multiple views. However, the existing multi-view graph learning methods mostly focus on the multi-view consistency, but neglect the potential multi-view inconsistency (which may be incurred by noise, corruptions, or view-specific characteristics). To address this, this paper presents a new graph learning-based multi-view clustering approach, which for the first time, to our knowledge, simultaneously and explicitly formulates the multi-view consistency and the multi-view inconsistency in a unified optimization model. To solve this model, a new alternating optimization scheme is designed, where the consistent and inconsistent parts of each single-view graph as well as the unified graph that fuses the consistent parts of all views can be iteratively learned. It is noteworthy that our multi-view graph learning model is applicable to both similarity graphs and dissimilarity graphs, leading to two graph fusion-based variants, namely, distance (dissimilarity) graph fusion and similarity graph fusion. Experiments on various multi-view datasets demonstrate the superiority of our approach.
引用
收藏
页码:1204 / 1209
页数:6
相关论文
共 50 条
  • [41] Deep Multi-View Subspace Clustering With Unified and Discriminative Learning
    Wang, Qianqian
    Cheng, Jiafeng
    Gao, Quanxue
    Zhao, Guoshuai
    Jiao, Licheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 (23) : 3483 - 3493
  • [42] Center consistency guided multi-view embedding anchor learning for large-scale graph clustering
    Zhang, Xinyue
    Ren, Zhenwen
    Yang, Chao
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [43] Adaptive sparse graph learning for multi-view spectral clustering
    Xiao, Qingjiang
    Du, Shiqiang
    Zhang, Kaiwu
    Song, Jinmei
    Huang, Yixuan
    APPLIED INTELLIGENCE, 2023, 53 (12) : 14855 - 14875
  • [44] Adaptive sparse graph learning for multi-view spectral clustering
    Qingjiang Xiao
    Shiqiang Du
    Kaiwu Zhang
    Jinmei Song
    Yixuan Huang
    Applied Intelligence, 2023, 53 : 14855 - 14875
  • [45] Learning robust affinity graph representation for multi-view clustering
    Jing, Peiguang
    Su, Yuting
    Li, Zhengnan
    Nie, Liqiang
    INFORMATION SCIENCES, 2021, 544 : 155 - 167
  • [46] Adaptive Topological Graph Learning for Generalized Multi-View Clustering
    He, Wen-jue
    Zhang, Zheng
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [47] Incomplete Multi-view Clustering via Structured Graph Learning
    Wu, Jie
    Zhuge, Wenzhang
    Tao, Hong
    Hou, Chenping
    Zhang, Zhao
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 98 - 112
  • [48] Multi-view spectral clustering via sparse graph learning
    Hu, Zhanxuan
    Nie, Feiping
    Chang, Wei
    Hao, Shuzheng
    Wang, Rong
    Li, Xuelong
    NEUROCOMPUTING, 2020, 384 : 1 - 10
  • [49] Incomplete Multi-View Clustering With Joint Partition and Graph Learning
    Li, Lusi
    Wan, Zhiqiang
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 589 - 602
  • [50] Robust and Consistent Anchor Graph Learning for Multi-View Clustering
    Liu, Suyuan
    Liao, Qing
    Wang, Siwei
    Liu, Xinwang
    Zhu, En
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4207 - 4219