Noisy parallel hybrid model of NBGRU and NCNN architectures for remaining useful life estimation

被引:7
|
作者
Al-Dulaimi, Ali [1 ]
Asif, Amir [1 ]
Mohammadi, Arash [2 ]
机构
[1] Concordia Univ, Elect & Comp Engn, Montreal, PQ, Canada
[2] Concordia Univ, Concordia Inst Informat Syst Engn, 1455 De Maisonneuve Blvd W,EV 009 187, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
C-MAPSS; prognostics and health management; remaining useful life estimation; bidirectional GRU; CNN; GRU; noisy training; deep learning; hybrid model; RECURRENT NEURAL-NETWORK; MACHINE; LSTM; PROGNOSTICS; PREDICTION;
D O I
10.1080/08982112.2020.1754427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate and robust estimation of Remaining Useful life (RUL) is of paramount importance for development of advanced smart and predictive maintenance strategies. To this aim, the paper proposes a new hybrid framework, referred to as the NPBGRU, developed by integration of three fully noisy deep learning architectures. Noisy CNN (NCNN) and Noisy Bi-directional GRU (NBGRU) paths are designed in parallel and their concatenated output is fed into the Noisy fusion center (NFC). Adopting the proposed noisy layers enhances the robustness and generalization behavior of the proposed model. The proposed NPBGRU framework is validated using NASA's C-MAPSS dataset, illustrating state-of-the-art results.
引用
收藏
页码:371 / 387
页数:17
相关论文
共 50 条
  • [31] Transitional data for estimation of gearbox remaining useful life
    Byington, CS
    Kozlowski, JD
    CRITICAL LINK: DIAGNOSIS TO PROGNOSIS, 1997, : 649 - 658
  • [32] Remaining Useful Life Estimation of Battery based on MEKF
    Huang, Denggao
    Jin, Peng
    Xie, Junlin
    Wang, Yuehui
    Wang, Xu
    Li, Cheng
    Huang, Qinming
    Wang, Qiying
    Su, Qinglie
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1591 - 1596
  • [33] Remaining useful life estimation with multiple local similarities
    Lyu, Jianhua
    Ying, Rongrong
    Lu, Ningyun
    Zhang, Baili
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95
  • [34] Online Estimation of Remaining Useful Life of Stator Insulation
    Jensen, William R.
    Strangas, Elias G.
    Foster, Shanelle N.
    2017 IEEE 11TH INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRICAL MACHINES, POWER ELECTRONICS AND DRIVES (SDEMPED), 2017, : 635 - 641
  • [35] Quantification of uncertainty information in remaining useful life estimation
    Zhao, Changdong
    Xiang, Shihu
    Hao, Songhua
    Niu, Feng
    Li, Kui
    APPLIED MATHEMATICAL MODELLING, 2025, 142
  • [36] Degradation path approximation for remaining useful life estimation
    Fan, Linchuan
    Lin, Wenyi
    Chen, Xiaolong
    Yin, Hongpeng
    Chai, Yi
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [37] Recurrent Neural Networks for Remaining Useful Life Estimation
    Heimes, Felix O.
    2008 INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM), 2008, : 59 - 64
  • [38] Evaluating Image Classification Deep Convolutional Neural Network Architectures for Remaining Useful Life Estimation of Turbofan Engines
    De Vol, Nathaniel
    Saldana, Christopher
    Fu, Katherine
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2022, 13 (02)
  • [39] A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries
    Sun, Tianfei
    Xia, Bizhong
    Liu, Yifan
    Lai, Yongzhi
    Zheng, Weiwei
    Wang, Huawen
    Wang, Wei
    Wang, Mingwang
    ENERGIES, 2019, 12 (19)
  • [40] Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method
    Liu, Hao
    Chen, Jian
    Hissel, Daniel
    Su, Hongye
    APPLIED ENERGY, 2019, 237 : 910 - 919