Thermal properties of organic light-emitting diodes

被引:42
|
作者
Bergemann, Kevin J. [2 ]
Krasny, Robert [3 ]
Forrest, Stephen R. [1 ,2 ,4 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Lighting; Convection; Conduction; Radiation;
D O I
10.1016/j.orgel.2012.05.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal management is important for the efficient operation of organic light-emitting diodes (OLED, or PHOLED) at high brightness, with the device operating temperature influencing both lifetime and performance. We apply a transmission-matrix approach to analytically model the effects of thermal conduction, convection and radiation on OLED temperature. The model predictions match experiment without requiring the use of fitting parameters. This allows for the simulation of the thermal response of various device architectures, materials combinations and environmental factors under a variety of operating conditions. Using these simulations, we find that 87% of the heat is dissipated through the air space adjacent to the glass package cap. Furthermore, an air gap between the device cathode and cap provides a significant thermal impedance. Minimizing the thickness of the internal air gap can lead to nearly room temperature operation, even at very high brightness. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:1565 / 1568
页数:4
相关论文
共 50 条
  • [31] Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes
    Capelli, Raffaella
    Toffanin, Stefano
    Generali, Gianluca
    Usta, Hakan
    Facchetti, Antonio
    Muccini, Michele
    NATURE MATERIALS, 2010, 9 (06) : 496 - 503
  • [32] Influence of light-emitting layer position on white organic light-emitting diodes
    Xiang, Dong-Xu
    Li, Hai-Rong
    Xie, Long-Zhen
    Yang, Jia-Ming
    Wang, Fang
    Yuan, Chao-Xin
    Sun, Yong-Zhe
    Faguang Xuebao/Chinese Journal of Luminescence, 2015, 36 (07): : 821 - 828
  • [33] Measurement of the Thermal Impedance of Light-Emitting Diodes and Light-Emitting Diode Matrices
    V. I. Smirnov
    V. A. Sergeev
    A. A. Gavrikov
    Measurement Techniques, 2017, 60 : 46 - 51
  • [34] Properties of Phosphorescent Organic Light-Emitting Diodes with Different Doping Order on Light Emitting Layer
    Zhang Wei
    Zhang Fang-hui
    Huang Jin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (07) : 1763 - 1766
  • [35] Organic light-emitting diodes driven by organic transistors
    Hu, YC
    Dong, GF
    Wang, LD
    Liang, Y
    Qiu, Y
    CHINESE PHYSICS LETTERS, 2004, 21 (04) : 723 - 725
  • [36] MEASUREMENT OF THE THERMAL IMPEDANCE OF LIGHT-EMITTING DIODES AND LIGHT-EMITTING DIODE MATRICES
    Smirnov, V. I.
    Sergeev, V. A.
    Gavrikov, A. A.
    MEASUREMENT TECHNIQUES, 2017, 60 (01) : 46 - 51
  • [37] Phosphorescent dyes for organic light-emitting diodes
    Chou, Pi-Tai
    Chi, Yun
    CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (02) : 380 - 395
  • [38] Naphthalimide polymers for organic light-emitting diodes
    Cacialli, F
    Bouche, CM
    Le Barny, P
    Friend, RH
    Facoetti, H
    Soyer, F
    Robin, P
    OPTICAL MATERIALS, 1998, 9 (1-4) : 163 - 167
  • [39] Dendritic macromolecules for organic light-emitting diodes
    Hwang, Seok-Ho
    Moorefield, Charles N.
    Newkome, George R.
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (11) : 2543 - 2557
  • [40] Additive manufactured organic light-emitting diodes
    Eder, Christian
    Rank, Manuel
    Heinrich, Andreas
    ORGANIC PHOTONIC MATERIALS AND DEVICES XXII, 2020, 11277