A dual-lithiophilic interfacial layer with intensified Lewis basicity and orbital hybridization for high-performance lithium metal batteries

被引:8
|
作者
Roh, Youngil [1 ]
Song, Jongchan [2 ]
Lee, Ju-Hyuk [1 ]
Kwon, Hyeokjin [1 ]
Baek, Jaewon [1 ]
Shin, Dongjae [1 ]
Yoo, Young Geun [2 ]
Ha, Seongmin [2 ]
Kim, Wonkeun [2 ]
Ryu, Kyunghan [2 ]
Kim, Hee-Tak [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Hyundai Motor Co, 37 Cheoldobangmulgwan Ro, Uiwang Si 16082, Gyeonggi Do, South Korea
[3] KAIST Inst NanoCentury, Korea Adv Inst Sci & Technol KAIST, Adv Battery Ctr, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
Lithium metal electrode; Lithiophilicity; Graphitic carbon nitride; Phosphorus doping; Cycling stability; Orbital hybridization; Nucleation sites; SOLID-ELECTROLYTE INTERPHASE; CARBON NITRIDE; ANODE; NUCLEATION; DEPOSITION; LIQUID; GROWTH;
D O I
10.1016/j.ensm.2022.07.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Controlling Li nucleation and growth by an interfacial layer is one of the critical challenges to achieving practical lithium metal batteries. In this work, we present a dual-lithiophilic interlayer, which has affinity to both Li+ and Li0 with the concept of intensified Lewis basicity and orbital hybridization. It was achieved by phosphorus-doped carbon nitride (PCN) layers in contact with Li metal electrode. Spectroscopic and electrochemical analyses demonstrated that strong interaction between the Li+ and PCN facilitates the charge transfer process. Driven by the orbital hybridization, under the PCN interfacial layer Li deposits grow with a planar morphology, mitigating electrolyte decomposition. A Li/Li symmetric cell employing the PCN interfacial layer operated for more than 400 cycles at 2 mA cm-2 and 2 mAh cm-2. Furthermore, a Li/NCM811 pouch cell with the PCN interfacial layer stably operated with 70% capacity retention for 330 cycles under practical operating conditions.
引用
收藏
页码:777 / 788
页数:12
相关论文
共 50 条
  • [21] Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries
    Cheng, Yifeng
    Ke, Xi
    Chen, Yuanmao
    Huang, Xinyue
    Shi, Zhicong
    Guo, Zaiping
    NANO ENERGY, 2019, 63
  • [22] Engineering interfacial adhesion for high-performance lithium metal anode
    Xu, Bingqing
    Liu, Zhe
    Li, Jiangxu
    Huang, Xin
    Qie, Boyu
    Gong, Tianyao
    Tan, Laiyuan
    Yang, Xiujia
    Paley, Daniel
    Dontigny, Martin
    Zaghib, Karim
    Liao, Xiangbiao
    Cheng, Qian
    Zhai, Haowei
    Chen, Xi
    Chen, Long-Qing
    Nan, Ce-Wen
    Lin, Yuan-Hua
    Yang, Yuan
    NANO ENERGY, 2020, 67
  • [23] Interfacial engineering for high-performance garnet-based lithium metal batteries: A perspective on lithiophilicity and lithiophobicity
    Srivastava, Pavitra
    Bazri, Behrouz
    Maurya, Dheeraj Kumar
    Huang, Wen-Tse
    Liao, Yu -Kai
    Huang, Jheng-Yi
    Wei, Da-Hua
    Hu, Shu-Fen
    Liu, Ru-Shi
    ENERGYCHEM, 2024, 6 (03)
  • [24] High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes
    Li, Zhuo
    Zhou, Xiao-Yan
    Guo, Xin
    ENERGY STORAGE MATERIALS, 2020, 29 : 149 - 155
  • [25] In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries
    Ma, Hyunsoo
    Hwang, Daeyeon
    Ahn, Young Jun
    Lee, Min-Young
    Kim, Saehun
    Lee, Yongwon
    Lee, Sang-Min
    Kwak, Sang Kyu
    Choi, Nam-Soon
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (26) : 29365 - 29375
  • [26] Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries
    Li, Guoxing
    Huang, Qingquan
    He, Xin
    Gao, Yue
    Wang, Daiwei
    Kim, Seong H.
    Wang, Donghai
    ACS NANO, 2018, 12 (02) : 1500 - 1507
  • [27] Composite protective layer for Li metal anode in high-performance lithium-oxygen batteries
    Lee, Dong Jin
    Lee, Hongkyung
    Song, Jongchan
    Ryou, Myung-Hyun
    Lee, Yong Min
    Kim, Hee-Tak
    Park, Jung-Ki
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 40 : 45 - 48
  • [28] Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries
    Cui, Can
    Zhang, Rupeng
    Fu, Chuankai
    Xiao, Rang
    Li, Renlong
    Ma, Yulin
    Wang, Jiajun
    Gao, Yunzhi
    Yin, Geping
    Zuo, Pengjian
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [29] Scalable Interfacial Engineering with Lithiophilic-Lithiophobic Layers for High-Performance All-Solid-State Li-Metal Batteries
    Ren, Pengfei
    Grundish, Nicholas S.
    Zhang, Sidong
    Zhou, Lihai
    Liu, Ruiping
    Wu, Nan
    Li, Yutao
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [30] Marginal Magnesium Doping for High-Performance Lithium Metal Batteries
    Choi, Seung Ho
    Lee, Seung Jong
    Yoo, Dong-Joo
    Park, Jun Ho
    Park, Jae-Hyuk
    Ko, You Na
    Park, Jungjin
    Sung, Yung-Eun
    Chung, Sung-Yoon
    Kim, Heejin
    Choi, Jang Wook
    ADVANCED ENERGY MATERIALS, 2019, 9 (41)