Phase imaging by spatial wavefront sampling

被引:64
|
作者
Soldevila, F. [1 ]
Duran, V. [2 ,3 ]
Clemente, P. [1 ,4 ]
Lancis, J. [1 ]
Tajahuerce, E. [1 ]
机构
[1] Univ Jaume 1, INIT, GROCUJI, E-12071 Castellon de La Plana, Spain
[2] Univ Grenoble Alpes, LIPHY, F-38000 Grenoble, France
[3] CNRS, LIPHY, F-38000 Grenoble, France
[4] Univ Jaume 1, SCIC, E-12071 Castellon de La Plana, Spain
来源
OPTICA | 2018年 / 5卷 / 02期
关键词
SHACK-HARTMANN SENSOR; MICROSCOPY; RESOLUTION; LIGHT; ILLUMINATION; FIELD; HOLOGRAPHY; RETRIEVAL; ARRAY; RECONSTRUCTION;
D O I
10.1364/OPTICA.5.000164
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase-imaging techniques extract the optical path length information of a scene, whereas wavefront sensors provide the shape of an optical wavefront. Since these two applications have different technical requirements, they have developed their own specific technologies. Here we show how to perform phase imaging combining wavefront sampling using a reconfigurable spatial light modulator with a beam position detector. The result is a time-multiplexed detection scheme, capable of being shortened considerably by compressive sensing. This robust referenceless method does not require the phase-unwrapping algorithms demanded by conventional interferometry, and its lenslet-free nature removes trade-offs usually found in Shack-Hartmann sensors. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:164 / 174
页数:11
相关论文
共 50 条
  • [31] An imaging method of wavefront coding system based on phase plate rotation
    Yi, Rigui
    Chen, Xi
    Dong, Liquan
    Liu, Ming
    Zhao, Yuejin
    Liu, Xiaohua
    2017 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTICAL SYSTEMS AND MODERN OPTOELECTRONIC INSTRUMENTS, 2017, 10616
  • [32] Quantitative phase imaging based on wavefront correction of a digital micromirror device
    Hu, Jing
    Xie, Xiwei
    Shen, Yibing
    OPTICS LETTERS, 2020, 45 (18) : 5036 - 5039
  • [33] Optimization of wavefront coding imaging system based on the phase transfer function
    Le, Vannhu
    Fan, Zhigang
    Chen, Shouqian
    Dung Duong Quoc
    OPTIK, 2016, 127 (03): : 1148 - 1152
  • [34] Computational phase imaging using spatio-temporal wavefront modulation
    Soldevila, F.
    Duran, V
    Clemente, P.
    Lancis, J.
    Tajahuerce, E.
    OPTICAL COHERENCE IMAGING TECHNIQUES AND IMAGING IN SCATTERING MEDIA III, 2019, 11078
  • [35] Analysis of wavefront coding imaging with cubic phase mask decenter and tilt
    Wu, Yijian
    Dong, Liquan
    Zhao, Yuejin
    Liu, Ming
    Chu, Xuhong
    Jia, Wei
    Guo, Xiaohu
    Feng, Yun
    APPLIED OPTICS, 2016, 55 (25) : 7009 - 7017
  • [36] Measuring of the phase modulation of liquid crystal spatial light modulator and correcting of the wavefront
    Wang, Zhi-Hua
    Yu, Xin
    Guangxue Jishu/Optical Technique, 2005, 31 (02): : 196 - 199
  • [37] Optical wavefront error assessed via phase diversity and a spatial light modulator
    Silva-Lopez, M.
    Bailen, F. J.
    Suarez, D. Orozco
    Alvarez-Herrero, A.
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY X, 2024, 13096
  • [38] Programmable wavefront generation using two binary phase spatial light modulators
    Yang, GG
    Broomfield, SE
    OPTICS COMMUNICATIONS, 1996, 124 (3-4) : 345 - 353
  • [39] Onboard Wavefront Estimation Using Spatial Light Modulator as a Phase Diversity Generator
    Miyamura, Norihide
    2009 IEEE SENSORS, VOLS 1-3, 2009, : 1492 - 1497
  • [40] Fast Spatial Sampling with Phase Controlled Resonant Scanner
    Sun, Zhanghao
    Quan, Ronald
    Solgaard, Olav
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,