Software Risk Prediction: Systematic Literature Review on Machine Learning Techniques

被引:3
|
作者
Mahmud, Mahmudul Hoque [1 ]
Nayan, Md Tanzirul Haque [1 ]
Ashir, Dewan Md Nur Anjum [1 ]
Kabir, Md Alamgir [2 ]
机构
[1] Amer Int Univ Bangladesh, Dept Comp Sci, 408-1 Kuratoli, Dhaka 1229, Bangladesh
[2] Malardalen Univ, Artificial Intelligence & Intelligent Syst Res Gr, Sch Innovat Design & Engn, Hogskoleplan 1, S-72220 Vasteras, Sweden
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 22期
关键词
systematic literature review; software risk; software risk prediction model; machine learning model; review; MODEL; MANAGEMENT; FRAMEWORK; FEATURES;
D O I
10.3390/app122211694
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Software Development Life Cycle (SDLC) includes the phases used to develop software. During the phases of the SDLC, unexpected risks might arise due to a lack of knowledge, control, and time. The consequences are severe if the risks are not addressed in the early phases of SDLC. This study aims to conduct a Systematic Literature Review (SLR) and acquire concise knowledge of Software Risk Prediction (SRP) from the published scientific articles from the year 2007 to 2022. Furthermore, we conducted a qualitative analysis of published articles on SRP. Some of the key findings include: (1) 16 articles are examined in this SLR to represent the outline of SRP; (2) Machine Learning (ML)-based detection models were extremely efficient and significant in terms of performance; (3) Very few research got excellent scores from quality analysis. As part of this SLR, we summarized and consolidated previously published SRP studies to discover the practices from prior research. This SLR will pave the way for further research in SRP and guide both researchers and practitioners.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Dengue models based on machine learning techniques: A systematic literature review
    Hoyos, William
    Aguilar, Jose
    Toro, Mauricio
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 119
  • [32] Machine Learning Techniques for Breast Cancer Analysis: A Systematic Literature Review
    Alkhathlan, Lina
    Saudagar, Abdul Khader Jilani
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (06): : 83 - 90
  • [33] Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review
    Dallora, Ana Luiza
    Eivazzadeh, Shahryar
    Mendes, Emilia
    Berglund, Johan
    Anderberg, Peter
    PLOS ONE, 2017, 12 (06):
  • [34] Prediction models and techniques for Open Source Software projects: A systematic literature review
    Syeed, M.M. Mahbubul
    Hammouda, Imed
    Systä, Tarja
    International Journal of Open Source Software and Processes, 2014, 5 (02) : 1 - 39
  • [35] Machine learning techniques for mortality prediction in emergency departments: a systematic review
    Naemi, Amin
    Schmidt, Thomas
    Mansourvar, Marjan
    Naghavi-Behzad, Mohammad
    Ebrahimi, Ali
    Wiil, Uffe Kock
    BMJ OPEN, 2021, 11 (11):
  • [36] Industrial applications of software defect prediction using machine learning: A business-driven systematic literature review
    Stradowski, Szymon
    Madeyski, Lech
    INFORMATION AND SOFTWARE TECHNOLOGY, 2023, 159
  • [37] MACHINE LEARNING IMPLEMENTATION IN LUNG CANCER PREDICTION - A SYSTEMATIC LITERATURE REVIEW
    Oentoro, Janice
    Prahastya, Rafif
    Pratama, Rendy
    Meiliana
    Fajar, Muhamad
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 435 - 439
  • [38] PREDICTION OF OSTEOARTHRITIS PROGRESSION USING MACHINE LEARNING: A SYSTEMATIC LITERATURE REVIEW
    Castagno, Simone
    Gompels, Benjamin
    Strangmark, Estelle
    Robertson-Waters, Eve
    Birch, Mark
    van der Schaar, Mihaela
    McCaskie, Andrew
    OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S68 - S69
  • [39] Machine Learning for public transportation demand prediction: A Systematic Literature Review
    di Torrepadula, Franca Rocco
    Napolitano, Enea Vincenzo
    Di Martino, Sergio
    Mazzocca, Nicola
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [40] Crop yield prediction using machine learning: A systematic literature review
    van Klompenburg, Thomas
    Kassahun, Ayalew
    Catal, Cagatay
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 177