Software Risk Prediction: Systematic Literature Review on Machine Learning Techniques

被引:3
|
作者
Mahmud, Mahmudul Hoque [1 ]
Nayan, Md Tanzirul Haque [1 ]
Ashir, Dewan Md Nur Anjum [1 ]
Kabir, Md Alamgir [2 ]
机构
[1] Amer Int Univ Bangladesh, Dept Comp Sci, 408-1 Kuratoli, Dhaka 1229, Bangladesh
[2] Malardalen Univ, Artificial Intelligence & Intelligent Syst Res Gr, Sch Innovat Design & Engn, Hogskoleplan 1, S-72220 Vasteras, Sweden
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 22期
关键词
systematic literature review; software risk; software risk prediction model; machine learning model; review; MODEL; MANAGEMENT; FRAMEWORK; FEATURES;
D O I
10.3390/app122211694
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Software Development Life Cycle (SDLC) includes the phases used to develop software. During the phases of the SDLC, unexpected risks might arise due to a lack of knowledge, control, and time. The consequences are severe if the risks are not addressed in the early phases of SDLC. This study aims to conduct a Systematic Literature Review (SLR) and acquire concise knowledge of Software Risk Prediction (SRP) from the published scientific articles from the year 2007 to 2022. Furthermore, we conducted a qualitative analysis of published articles on SRP. Some of the key findings include: (1) 16 articles are examined in this SLR to represent the outline of SRP; (2) Machine Learning (ML)-based detection models were extremely efficient and significant in terms of performance; (3) Very few research got excellent scores from quality analysis. As part of this SLR, we summarized and consolidated previously published SRP studies to discover the practices from prior research. This SLR will pave the way for further research in SRP and guide both researchers and practitioners.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A systematic literature review of machine learning techniques for software maintainability prediction
    Alsolai, Hadeel
    Roper, Marc
    INFORMATION AND SOFTWARE TECHNOLOGY, 2020, 119
  • [2] Software Defect Prediction Using Supervised Machine Learning Techniques: A Systematic Literature Review
    Matloob, Faseeha
    Aftab, Shabib
    Ahmad, Munir
    Khan, Muhammad Adnan
    Fatima, Areej
    Iqbal, Muhammad
    Alruwaili, Wesam Mohsen
    Elmitwally, Nouh Sabri
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02): : 403 - 421
  • [3] A systematic review of machine learning techniques for software fault prediction
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2015, 27 : 504 - 518
  • [4] Systematic literature review: machine learning for software fault prediction
    Navarro Cedeno, Gabriel Omar
    Cortes Moya, Katherine
    Somarribas Dormond, Ahmed
    Gonzalez-Torres, Antonio
    Rojas-Hernandez, Yenory
    2023 IEEE 41ST CENTRAL AMERICA AND PANAMA CONVENTION, CONCAPAN XLI, 2023, : 134 - 139
  • [5] Machine learning techniques in bankruptcy prediction: A systematic literature review
    Dasilas, Apostolos
    Rigani, Anna
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [6] Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review
    Batool, Iqra
    Khan, Tamim Ahmed
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [7] Machine Learning for Credit Risk Prediction: A Systematic Literature Review
    Noriega, Jomark Pablo
    Rivera, Luis Antonio
    Herrera, Jose Alfredo
    DATA, 2023, 8 (11)
  • [8] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [9] Machine learning techniques for credit risk evaluation: a systematic literature review
    Siddharth Bhatore
    Lalit Mohan
    Y. Raghu Reddy
    Journal of Banking and Financial Technology, 2020, 4 (1): : 111 - 138
  • [10] A systematic literature review of software effort prediction using machine learning methods
    Ali, Asad
    Gravino, Carmine
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2019, 31 (10)