Butyrate Production in Engineered Escherichia coli With Synthetic Scaffolds

被引:81
|
作者
Baek, Jang-Mi [1 ]
Mazumdar, Suman [1 ]
Lee, Sang-Woo [1 ]
Jung, Moo-Young [1 ]
Lim, Jae-Hyung [2 ]
Seo, Sang-Woo [3 ]
Jung, Gyoo-Yeol [2 ,3 ]
Oh, Min-Kyu [1 ]
机构
[1] Korea Univ, Dept Chem & Biol Engn, Seoul 136713, South Korea
[2] Pohang Univ Sci & Technol, Sch Interdisciplinary Biosci & Bioengn, Pohang, Gyeongbuk, South Korea
[3] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Escherichia coli; butyrate; synthetic scaffold; metabolic engineering; heterologous pathway; CLOSTRIDIUM-TYROBUTYRICUM; METABOLIC BURDEN; ACID; TOXICITY; BIOSYNTHESIS; FERMENTATION; PROTEIN;
D O I
10.1002/bit.24925
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Butyrate pathway was constructed in recombinant Escherichia coli using the genes from Clostridium acetobutylicum and Treponema denticola. However, the pathway constructed from exogenous enzymes did not efficiently convert carbon flux to butyrate. Three steps of the productivity enhancement were attempted in this study. First, pathway engineering to delete metabolic pathways to by-products successfully improved the butyrate production. Second, synthetic scaffold protein that spatially co-localizes enzymes was introduced to improve the efficiency of the heterologous pathway enzymes, resulting in threefold improvement in butyrate production. Finally, further optimizations of inducer concentrations and pH adjustment were tried. The final titer of butyrate was 4.3 and 7.2g/L under batch and fed-batch cultivation, respectively. This study demonstrated the importance of synthetic scaffold protein as a useful tool for optimization of heterologous butyrate pathway in E. coli. Biotechnol. Bioeng. 2013;110: 2790-2794. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:2790 / 2794
页数:5
相关论文
共 50 条
  • [21] Microdiesel:: Escherichia coli engineered for fuel production
    Kalscheuer, Rainer
    Stoelting, Torsten
    Steinbuechel, Alexander
    MICROBIOLOGY-SGM, 2006, 152 : 2529 - 2536
  • [22] Production of salidroside in metabolically engineered Escherichia coli
    Yanfen Bai
    Huiping Bi
    Yibin Zhuang
    Chang Liu
    Tao Cai
    Xiaonan Liu
    Xueli Zhang
    Tao Liu
    Yanhe Ma
    Scientific Reports, 4
  • [23] Production of vanillin by metabolically engineered Escherichia coli
    Yoon, SH
    Li, C
    Kim, JE
    Lee, SH
    Yoon, JY
    Choi, MS
    Seo, WT
    Yang, JK
    Kim, JY
    Kim, SW
    BIOTECHNOLOGY LETTERS, 2005, 27 (22) : 1829 - 1832
  • [24] Pyruvate production using engineered Escherichia coli
    Akita, Hironaga
    Nakashima, Nobutaka
    Hoshino, Tamotsu
    AMB EXPRESS, 2016, 6
  • [25] Production of salidroside in metabolically engineered Escherichia coli
    Bai, Yanfen
    Bi, Huiping
    Zhuang, Yibin
    Liu, Chang
    Cai, Tao
    Liu, Xiaonan
    Zhang, Xueli
    Liu, Tao
    Ma, Yanhe
    SCIENTIFIC REPORTS, 2014, 4
  • [26] Enhanced production of menaquinone in metabolically engineered Escherichia coli
    Kong, Min Kyung
    Lee, Pyung Cheon
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2009, 108 : S171 - S171
  • [27] Improved phloroglucinol production by metabolically engineered Escherichia coli
    Yujin Cao
    Xinglin Jiang
    Rubing Zhang
    Mo Xian
    Applied Microbiology and Biotechnology, 2011, 91 : 1545 - 1552
  • [28] Ferulic acid production by metabolically engineered Escherichia coli
    Lv, Huajun
    Zhang, Ying
    Shao, Jie
    Liu, Haili
    Wang, Yong
    BIORESOURCES AND BIOPROCESSING, 2021, 8 (01)
  • [29] In Vivo Production of Five Crocins in the Engineered Escherichia coli
    Pu, Xiangdong
    He, Chunnian
    Yang, Yan
    Wang, Wei
    Hu, Kaizhi
    Xu, Zhichao
    Song, Jingyuan
    ACS SYNTHETIC BIOLOGY, 2020, 9 (05): : 1160 - 1168
  • [30] Production of Rainbow Colorants by Metabolically Engineered Escherichia coli
    Yang, Dongsoo
    Park, Seon Young
    Lee, Sang Yup
    ADVANCED SCIENCE, 2021, 8 (13)