On Component Order Edge Connectivity Of a Complete Bipartite Graph

被引:0
|
作者
Gross, Daniel [1 ]
Karmierczak, L. William [2 ]
Saccoman, John T. [1 ]
Suffel, Charles [2 ]
Suhartomo, Antonius [2 ]
机构
[1] Seton Hall Univ, S Orange, NJ 07079 USA
[2] Stevens Inst Technol, Hoboken, NJ USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The traditional parameter used as a measure of vulnerability of a network modeled by a graph with perfect nodes and edges that may fail is edge connectivity lambda. For the complete bipartite graph K-p,K-q where 1 <= p <= q, lambda(K-p,K-q) = p. In this case, failure of the network means that the surviving subgraph becomes disconnected upon the failure of individual edges. If, instead, failure of the network is defined to mean that the surviving subgraph has no component of order greater than or equal to some preassigned number k, then the associated vulnerability parameter, the k-component order edge connectivity lambda((k))(c), is the minimum number of edges required to fail so that the surviving subgraph is in a failure state. We determine the value of lambda((k))(c)(K-p,K-q) for arbitrary 1 <= p <= q and 4 <= k <= p + q. As it happens, the situation is relatively simple whenp is small and more involved whenp is large.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [21] Quantum counting on the complete bipartite graph
    Bezerra, Gustavo A.
    Santos, Raqueline A. M.
    Portugal, Renato
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024, 22 (06)
  • [22] CHROMATIC POLYNOMIAL OF A COMPLETE BIPARTITE GRAPH
    SWENSWEN.JR
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (07): : 797 - 798
  • [23] Covering a graph by complete bipartite graphs
    Erdos, P
    Pyber, L
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 249 - 251
  • [24] ON PLANAR DECOMPOSITION OF A COMPLETE BIPARTITE GRAPH
    SHIRAKAW.I
    TAKAHASH.H
    OZAKI, H
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (02) : 408 - &
  • [25] On paths in a complete bipartite geometric graph
    Kaneko, A
    Kano, M
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 187 - 191
  • [26] Complete bipartite graph is a totally irregular total graph
    Tilukay, Meilin, I
    Taihuttu, Pranaya D. M.
    Salman, A. N. M.
    Rumlawang, Francis Y.
    Leleury, Zeth A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 387 - 395
  • [27] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [28] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Bernardo Ábrego
    Silvia Fernández-Merchant
    Athena Sparks
    Graphs and Combinatorics, 2020, 36 : 205 - 220
  • [29] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Abrego, Bernardo
    Fernandez-Merchant, Silvia
    Sparks, Athena
    GRAPHS AND COMBINATORICS, 2020, 36 (02) : 205 - 220
  • [30] Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs
    Duginov, Oleg
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (03): : 203 - 214