COMPARISON OF ADAPTIVE MULTIRESOLUTION AND ADAPTIVE MESH REFINEMENT APPLIED TO SIMULATIONS OF THE COMPRESSIBLE EULER EQUATIONS

被引:20
|
作者
Deiterding, Ralf [1 ]
Domingues, Margarete O. [2 ]
Gomes, Sonia M. [3 ]
Schneider, Kai [4 ,5 ]
机构
[1] Univ Southampton, Aerodynam & Flight Mech Res Grp, Highfield Campus, Southampton SO17 1BJ, Hants, England
[2] INPE, Lab Associado Comp & Matemat Aplicada LAC, Coordenadoria Lab Associados CTE, Ave Astronautas 1758, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[3] Univ Estadual Campinas Unicamp, IMECC, Rua Sergio Buarque de Holanda,651, BR-13083859 Campinas, SP, Brazil
[4] Univ Aix Marseille, M2P2 CNRS, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[5] Univ Aix Marseille, CMI, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2016年 / 38卷 / 05期
基金
巴西圣保罗研究基金会;
关键词
adaptive numerical methods; conservation laws; Euler equations; multiresolution; mesh refinement; local time stepping; HYPERBOLIC CONSERVATION-LAWS; 2-DIMENSIONAL GAS-DYNAMICS; NUMERICAL-SOLUTION; ERROR ESTIMATION; RIEMANN PROBLEM; FLUID-DYNAMICS; PARABOLIC PDES; ALGORITHMS; SCHEMES; FLOWS;
D O I
10.1137/15M1026043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a detailed comparison between two adaptive numerical approaches to solve partial differential equations, adaptive multiresolution (MR) and adaptive mesh refinement (AMR). Both discretizations are based on finite volumes in space with second order shock-capturing and explicit time integration either with or without local time stepping. The two methods are benchmarked for the compressible Euler equations in Cartesian geometry. As test cases a two-dimensional Riemann problem, Lax-Liu #6, and a three-dimensional ellipsoidally expanding shock wave have been chosen. We compare and assess their computational efficiency in terms of CPU time and memory requirements. We evaluate the accuracy by comparing the results of the adaptive computations with those obtained with the corresponding FV scheme using a regular fine mesh. We find that both approaches yield similar trends for CPU time compression for increasing number of refinement levels. MR exhibits more efficient memory compression than AMR and shows slightly enhanced convergence; however, a larger absolute overhead is measured for the tested codes.
引用
收藏
页码:S173 / S193
页数:21
相关论文
共 50 条
  • [31] ADAPTIVE MESH REFINEMENT OF THE SOLIDIFICATION FRONT IN CONTINUOUS CASTER SIMULATIONS
    Zhou, Xiang
    Moore, Matthew T.
    Ma, Haibo
    Silaen, Armin K.
    Zhou, Chenn Q.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
  • [32] Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations
    Labadens, Marc
    Chapon, Damien
    Pomarede, Daniel
    Teyssier, Romain
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXI, 2012, 461 : 837 - 840
  • [33] Dynamic mode decomposition in adaptive mesh refinement and coarsening simulations
    Barros, Gabriel F.
    Grave, Malu
    Viguerie, Alex
    Reali, Alessandro
    Coutinho, Alvaro L. G. A.
    ENGINEERING WITH COMPUTERS, 2022, 38 (05) : 4241 - 4268
  • [34] Adaptive multiresolution refinement with distance fields
    Tsukanov, I.
    Shapiro, V.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (11) : 1355 - 1386
  • [35] AN ADAPTIVE CARTESIAN MESH ALGORITHM FOR THE EULER EQUATIONS IN ARBITRARY GEOMETRIES
    BERGER, MJ
    LEVEQUE, RJ
    AIAA 9TH COMPUTATIONAL FLUID DYNAMICS CONFERENCE: A COLLECTION OF TECHNICAL PAPERS, 1989, : 1 - 7
  • [36] Comparison of parallelization models for structured adaptive mesh refinement
    Rantakokko, J
    EURO-PAR 2004 PARALLEL PROCESSING, PROCEEDINGS, 2004, 3149 : 615 - 623
  • [37] A fourth-order adaptive mesh refinement algorithm for the multicomponent, reacting compressible Navier-Stokes equations
    Emmett, Matthew
    Motheau, Emmanuel
    Zhang, Weiqun
    Minion, Michael
    Bell, John B.
    COMBUSTION THEORY AND MODELLING, 2019, 23 (04) : 592 - 625
  • [38] ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS
    BERGER, MJ
    OLIGER, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) : 484 - 512
  • [39] Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations
    Hartmann, R
    Houston, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) : 508 - 532
  • [40] SELD-ADAPTIVE MESH REFINEMENT FOR THE COMPUTATION OF STEADY, COMPRESSIBLE, VISCOUS FLOWS
    FISCHER, J
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, 1994, 18 (04): : 241 - 252