COMPARISON OF ADAPTIVE MULTIRESOLUTION AND ADAPTIVE MESH REFINEMENT APPLIED TO SIMULATIONS OF THE COMPRESSIBLE EULER EQUATIONS

被引:20
|
作者
Deiterding, Ralf [1 ]
Domingues, Margarete O. [2 ]
Gomes, Sonia M. [3 ]
Schneider, Kai [4 ,5 ]
机构
[1] Univ Southampton, Aerodynam & Flight Mech Res Grp, Highfield Campus, Southampton SO17 1BJ, Hants, England
[2] INPE, Lab Associado Comp & Matemat Aplicada LAC, Coordenadoria Lab Associados CTE, Ave Astronautas 1758, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[3] Univ Estadual Campinas Unicamp, IMECC, Rua Sergio Buarque de Holanda,651, BR-13083859 Campinas, SP, Brazil
[4] Univ Aix Marseille, M2P2 CNRS, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[5] Univ Aix Marseille, CMI, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2016年 / 38卷 / 05期
基金
巴西圣保罗研究基金会;
关键词
adaptive numerical methods; conservation laws; Euler equations; multiresolution; mesh refinement; local time stepping; HYPERBOLIC CONSERVATION-LAWS; 2-DIMENSIONAL GAS-DYNAMICS; NUMERICAL-SOLUTION; ERROR ESTIMATION; RIEMANN PROBLEM; FLUID-DYNAMICS; PARABOLIC PDES; ALGORITHMS; SCHEMES; FLOWS;
D O I
10.1137/15M1026043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a detailed comparison between two adaptive numerical approaches to solve partial differential equations, adaptive multiresolution (MR) and adaptive mesh refinement (AMR). Both discretizations are based on finite volumes in space with second order shock-capturing and explicit time integration either with or without local time stepping. The two methods are benchmarked for the compressible Euler equations in Cartesian geometry. As test cases a two-dimensional Riemann problem, Lax-Liu #6, and a three-dimensional ellipsoidally expanding shock wave have been chosen. We compare and assess their computational efficiency in terms of CPU time and memory requirements. We evaluate the accuracy by comparing the results of the adaptive computations with those obtained with the corresponding FV scheme using a regular fine mesh. We find that both approaches yield similar trends for CPU time compression for increasing number of refinement levels. MR exhibits more efficient memory compression than AMR and shows slightly enhanced convergence; however, a larger absolute overhead is measured for the tested codes.
引用
收藏
页码:S173 / S193
页数:21
相关论文
共 50 条
  • [1] Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations
    Kopera, Michal A.
    Giraldo, Francis X.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 92 - 117
  • [2] Adaptive mesh refinement for singular solutions of the incompressible Euler equations
    Grauer, R
    Marliani, C
    Germaschewski, K
    PHYSICAL REVIEW LETTERS, 1998, 80 (19) : 4177 - 4180
  • [3] Comparison of hierarchical and non-hierarchical error indicators for adaptive mesh refinement for the Euler equations
    Becker, Roland
    Gokpi, Kossivi
    Schall, Eric
    Trujillo, David
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2013, 227 (G6) : 933 - 943
  • [4] Variational multiscale error estimators for the adaptive mesh refinement of compressible flow simulations
    Bayona-Roa, Camilo
    Codina, Ramon
    Baiges, Joan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 501 - 526
  • [5] Adaptive mesh refinement for micromagnetics simulations
    Garcia-Cervera, Carlos J.
    Roma, Alexandre M.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (06) : 1648 - 1654
  • [6] Adaptive multiresolution mesh refinement for the solution of evolution PDEs
    Jain, S.
    Tsiotras, P.
    Zhou, H. -M.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 423 - 428
  • [7] AUTOMATIC ADAPTIVE GRID REFINEMENT FOR THE EULER EQUATIONS
    BERGER, MJ
    JAMESON, A
    AIAA JOURNAL, 1985, 23 (04) : 561 - 568
  • [8] An arbitrary Lagrangian-Eulerian method with adaptive mesh refinement for the solution of the Euler equations
    Anderson, RW
    Elliott, NS
    Pember, RB
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 598 - 617
  • [9] A HIERARCHICAL MULTIRESOLUTION ADAPTIVE MESH REFINEMENT FOR THE SOLUTION OF EVOLUTION PDEs
    Jain, S.
    Tsiotras, P.
    Zhou, H. -M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02): : 1221 - 1248
  • [10] Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations
    Domingues, Margarete O.
    Gomes, Sonia M.
    Roussel, Olivier
    Schneider, Kai
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (09) : 2303 - 2321