A bearing fault diagnosis method based on sparse decomposition theory

被引:10
|
作者
Zhang Xin-peng [1 ]
Hu Niao-qing [1 ]
Hu Lei [1 ]
Chen Ling [1 ]
机构
[1] Natl Univ Def Technol, Lab Sci & Technol Integrated Logist Support, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; sparse decomposition; dictionary learning; representation error; SPECTRUM;
D O I
10.1007/s11771-016-3253-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals.
引用
收藏
页码:1961 / 1969
页数:9
相关论文
共 50 条
  • [31] A New Method of Aero-engine Bearing Fault Diagnosis Based on EMD Decomposition
    Zhang, Xiaopu
    Lv, Zhenbang
    Sun, Qian
    2022 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM-LONDON 2022, 2022, : 6 - 10
  • [32] Early Fault Diagnosis Method for Rolling Bearing Based on Improved Singular Values Decomposition
    Lei, Zhen
    Zheng, Yinhuan
    Sun, Chengwen
    Lu, Hong
    Qi, Junde
    Zhang, Wei
    Zou, Chao
    Li, Zhangjie
    INTELLIGENT NETWORKED THINGS, CINT 2024, PT I, 2024, 2138 : 22 - 31
  • [33] Bearing Fault Diagnosis Method of Deep Convolutional Neural Network Based on Multiwavelet Decomposition
    Tao T.
    Zhou W.
    Kuang J.
    Xu G.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 5 (31-41): : 31 - 41
  • [35] A clustering K-SVD-based sparse representation method for rolling bearing fault diagnosis
    Yu, Qingwen
    Li, Jimeng
    Li, Zhixin
    Zhang, Jinfeng
    INSIGHT, 2021, 63 (03) : 160 - 167
  • [36] Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
    Huang, Weiguo
    Wang, Jun
    Du, Guifu
    Wu, Shuyou
    Zhu, Zhongkui
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2024, 37 (01)
  • [37] Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
    Weiguo Huang
    Jun Wang
    Guifu Du
    Shuyou Wu
    Zhongkui Zhu
    Chinese Journal of Mechanical Engineering, 2024, 37 (05) : 277 - 290
  • [38] Fault diagnosis of rolling bearing based on resonance-based sparse signal decomposition with optimal Q-factor
    Lu, Yan
    Du, Juan
    Tao, Xian
    MEASUREMENT & CONTROL, 2019, 52 (7-8): : 1111 - 1121
  • [39] Bearing Fault Vibration Signal Feature Extraction and Recognition Method Based on EEMD Superresolution Sparse Decomposition
    Zhang-Jian
    Raja, S. Selvakumar
    Nan, Deng
    Kon, Mawien
    SHOCK AND VIBRATION, 2022, 2022
  • [40] Bearing fault diagnosis method based on HCDDP
    Su S.
    Zhang Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (23): : 103 - 111