A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame

被引:40
|
作者
Lee, T [1 ]
Lin, CL [1 ]
Chen, LD [1 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
关键词
lattice Boltzmann equation; laminar diffusion flame; quasi-incompressible flow; TVD scheme;
D O I
10.1016/j.jcp.2005.10.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new two-distribution lattice Boltzmann equation (LBE) algorithm is presented to solve the laminar diffusion flames within the context of Burke-Schumann flame sheet model. One distribution models the transport of the Schvab-Zeldovich coupling function, or the mixture fraction to combine the energy and species equations. The other distribution models the quasi-incompressible Navier-Stokes equations with the low Mach number approximation. In the quasi-incompressible flows, the thermodynamics quantities depend on the coupling function but not on the hydrodynamic pressure, and the fluid components are assumed to be compressible only in the mixing/reaction region. A systematic and consistent approach to deriving LBEs for the general advection-diffusion equation and the quasi-incompressible Navier-Stokes equations are also presented. The streaming step of the LBEs are discretized by the total variation diminishing (TVD) Lax-Wendroff scheme. Numerical simulations are carried out to reproduce the low frequency flame oscillation (or flame flicker) of buoyant jet diffusion flame. Comparison between the quasi-incompressible model and the incompressible model is presented and the role of non-solenoidal velocity is examined. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 50 条
  • [21] APPLICATION OF A PRIMITIVE VARIABLE NEWTON METHOD FOR THE CALCULATION OF AN AXISYMMETRICAL LAMINAR DIFFUSION FLAME
    XU, YN
    SMOOKE, MD
    JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 104 (01) : 99 - 109
  • [22] The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1
    Kholghy, Mohammadreza
    Saffaripour, Meghdad
    Yip, Christopher
    Thomson, Murray John
    COMBUSTION AND FLAME, 2013, 160 (10) : 2119 - 2130
  • [23] Effects of N2 gas on preheated laminar LPG jet diffusion flame
    Mishra, D. P.
    Kumar, P.
    ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (11) : 2144 - 2149
  • [24] Experimental and kinetic investigation on soot formation in laminar diffusion flame of Jet A/butanol blends
    He, Xu
    Xiang, Qi
    Jia, Jingyang
    Yan, Jiaqi
    Zhang, Zhiwei
    Xu, Yabei
    Chen, Dongping
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 116
  • [25] PREDICTION OF LAMINAR JET DIFFUSION FLAME SIZES .1. THEORETICAL-MODEL
    ROPER, FG
    COMBUSTION AND FLAME, 1977, 29 (03) : 219 - 226
  • [26] A numerical and experimental study of a laminar sooting coflow Jet-A1 diffusion flame
    Saffaripour, M.
    Zabeti, P.
    Dworkin, S. B.
    Zhang, Q.
    Guo, H.
    Liu, F.
    Smallwood, G. J.
    Thomson, M. J.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 601 - 608
  • [27] PREDICTION OF LAMINAR JET DIFFUSION FLAME SIZES .2. EXPERIMENTAL-VERIFICATION
    ROPER, FG
    SMITH, C
    CUNNINGHAM, AC
    COMBUSTION AND FLAME, 1977, 29 (03) : 227 - 234
  • [28] Stability diagram for lift-off and blowout of a round jet laminar diffusion flame
    Ghosal, S
    Vervisch, L
    COMBUSTION AND FLAME, 2001, 124 (04) : 646 - 655
  • [29] The effect of pressure on the characteristics of laminar jet diffusion flame: A similarity analysis and experimental study
    Chen, Jian
    Delichatsios, Michael
    Ding, Zhiwei
    Li, Changhai
    Lu, Shouxiang
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2020, 116
  • [30] Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method
    Ljubomir Budinski
    Quantum Information Processing, 2021, 20