Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems

被引:90
|
作者
Chen, Xi [1 ,2 ]
Liu, Yong-Chun [1 ,2 ]
Peng, Pai [1 ,2 ]
Zhi, Yanyan [1 ,2 ,3 ]
Xiao, Yun-Feng [1 ,2 ,3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
基金
中国国家自然科学基金;
关键词
QUANTUM GROUND-STATE; CAVITY OPTOMECHANICS; OSCILLATOR; MOTION; LIMIT; MODE;
D O I
10.1103/PhysRevA.92.033841
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cooling macroscopic objects is of importance for both fundamental and applied physics. Here we study the optomechanical cooling in a hybrid system which consists of a cloud of atoms coupled to a cavity optomechanical system. On one hand, the asymmetric Fano or electromagnetically induced transparency resonance is explored and the steady-state cooling limits of resonators with frequency omega(m) are analytically obtained, permitting ground-state cooling of massive low-frequency resonators beyond the resolved sideband limit. On the other hand, due to the excitation-saturation effect, the validity of cooling requires the number of atoms to be much larger than the number of steady-state excitations, which is proportional to omega(-2)(m). Thus, this limitation plays a minor role in cooling higher-frequency resonators, but becomes important for macroscopic lower-frequency resonators. Under such limitation on the number of atoms, the optimal parameters are quantified. Our study can be a guideline for both theoretical and experimental study of cooling macroscopic objects in atom-optomechanical hybrid systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupling to a Hybrid Atom-Optomechanical System
    Jingyi Liu
    Wenzhao Zhang
    Xun Li
    Weibin Yan
    Ling Zhou
    International Journal of Theoretical Physics, 2016, 55 : 4620 - 4630
  • [32] Cooling of coupled nano-mechanical resonators in the weak optomechanical coupling regime
    Wang, Qiong
    He, Zhi
    LASER PHYSICS, 2019, 29 (02)
  • [33] Force sensing and cooling for the mechanical membrane in a hybrid optomechanical system
    He, Qing
    Badshah, Fazal
    Song, Yanlai
    Wang, Lianbei
    Liang, Erjun
    Su, Shi-Lei
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [34] Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system
    Liao, Qinghong
    Zhou, Liangtao
    Wang, Xiaoqian
    Liu, Yongchun
    OPTICS EXPRESS, 2022, 30 (21) : 38776 - 38788
  • [35] Optomechanical cooling of a macroscopic oscillator by homodyne feedback
    Mancini, S
    Vitali, D
    Tombesi, P
    PHYSICAL REVIEW LETTERS, 1998, 80 (04) : 688 - 691
  • [36] Entanglement in macroscopic optomechanical systems
    Vitali, Danid
    Genes, Claudiu
    Mancini, Stefano
    Tombesi, Paolo
    NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [37] Optomechanical effects in a macroscopic hybrid system
    Yellapragada, K. C.
    Pramanik, Nikhil
    Singh, Suneel
    Lakshmi, P. Anantha
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [38] Pulsed Laser Cooling for Cavity Optomechanical Resonators
    Machnes, S.
    Cerrillo, J.
    Aspelmeyer, M.
    Wieczorek, W.
    Plenio, M. B.
    Retzker, A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (15)
  • [39] Macroscopic Mechanical Entanglement Stability in Two Distant Dissipative Optomechanical Systems
    Rafeie, M.
    Tavassoly, M. K.
    Kheirabady, M. Setodeh
    ANNALEN DER PHYSIK, 2022, 534 (07)
  • [40] Simultaneous cooling the coupled nano-mechanical resonators in the strong optomechanical coupling regime
    Wang, Qiong
    Xu, Lan
    Wang, Ya-Min
    LASER PHYSICS, 2019, 29 (06)