Fast Deep Asymmetric Hashing for Image Retrieval

被引:0
|
作者
Lin, Chuangquan [1 ]
Lai, Zhihui [1 ,2 ]
Lu, Jianglin [1 ]
Zhou, Jie [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Comp Vis Inst, Shenzhen 518060, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
来源
关键词
Image retrieval; Asymmetric hashing; Deep learning;
D O I
10.1007/978-3-031-02444-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, by exploiting asymmetric learning mechanism, asymmetric hashing methods achieve superior performance in image retrieval. However, due to the discrete binary constraint, these methods typically rely on a special optimization strategy of discrete cyclic coordinate descent (DCC), which is time-consuming since it must learn the binary codes bit by bit. To address this problem, we propose a novel deep supervised hashing method called Fast Deep Asymmetric Hashing (FDAH), which learns the binary codes of training and query sets in an asymmetric way. FDAH designs a novel asymmetric hash learning framework using the inner product of the output of deep network and semantic label regression to approximate the similarity and minimize the discriminant reconstruction error between the deep representation and the binary codes. Instead of using the DCC optimization strategy, FDAH avoids using the quadratic term of binary variables and the binary code of all bits can be optimized simultaneously in one step. Moreover, by incorporating the semantic information in binary code learning and the quantization process, FDAH can obtain more discriminative and efficient binary codes. Extensive experiments on three well-known datasets show that the proposed FDAH can achieve state-of-the-art performance with less training time.
引用
收藏
页码:411 / 420
页数:10
相关论文
共 50 条
  • [21] Deep Progressive Hashing for Image Retrieval
    Bai, Jiale
    Ni, Bingbing
    Wang, Minsi
    Li, Zefan
    Cheng, Shuo
    Yang, Xiaokang
    Hu, Chuanping
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (12) : 3178 - 3193
  • [22] Deep forest hashing for image retrieval
    Zhou, Meng
    Zeng, Xianhua
    Chen, Aozhu
    PATTERN RECOGNITION, 2019, 95 : 114 - 127
  • [23] Hierarchical deep hashing for image retrieval
    Song, Ge
    Tan, Xiaoyang
    FRONTIERS OF COMPUTER SCIENCE, 2017, 11 (02) : 253 - 265
  • [24] Deep Progressive Hashing for Image Retrieval
    Bai, Jiale
    Ni, Bingbing
    Wang, Minsi
    Shen, Yang
    Lai, Hanjiang
    Zhang, Chongyang
    Mei, Lin
    Hu, Chuanping
    Yao, Chen
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 208 - 216
  • [25] Robust and Index-Compatible Deep Hashing for Accurate and Fast Image Retrieval
    Liu, Jing
    Wu, Dayan
    Zhang, Wanqian
    Li, Bo
    Wang, Weiping
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 67 - 77
  • [26] An Ensemble Hashing Framework for Fast Image Retrieval
    Li, Huanyu
    Li, Yunqiang
    ADVANCES IN INTERNETWORKING, DATA & WEB TECHNOLOGIES, EIDWT-2017, 2018, 6 : 167 - 177
  • [27] Unsupervised Triplet Hashing for Fast Image Retrieval
    Huang, Shanshan
    Xiong, Yichao
    Zhang, Ya
    Wang, Jia
    PROCEEDINGS OF THE THEMATIC WORKSHOPS OF ACM MULTIMEDIA 2017 (THEMATIC WORKSHOPS'17), 2017, : 84 - 92
  • [28] Multiple Spaces Deep Hashing for Image Retrieval
    Wang, Xianyang
    Guo, Qingbei
    Zhao, Xiuyang
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 397 - 401
  • [29] Unsupervised Deep Triplet Hashing for Image Retrieval
    Meng, Lingtao
    Zhang, Qiuyu
    Yang, Rui
    Huang, Yibo
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1489 - 1493
  • [30] Piecewise supervised deep hashing for image retrieval
    Yannuan Li
    Lin Wan
    Ting Fu
    Weijun Hu
    Multimedia Tools and Applications, 2019, 78 : 24431 - 24451