The role of mechanical stratigraphy on the refraction of strike-slip faults

被引:12
|
作者
Carlini, Mirko [1 ]
Viola, Giulio [1 ]
Mattila, Jussi [2 ]
Castellucci, Luca [1 ]
机构
[1] Univ Bologna, BiGeA Dept Biol Geol & Environm Sci, Bologna, Italy
[2] Geol Survey Finland, GTK Geologian Tutkimuskeskus, Espoo, Finland
关键词
NORTHERN APENNINES; EXTENSION; EXAMPLES;
D O I
10.5194/se-10-343-2019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fault and fracture planes (FFPs) affecting multilayer sequences can be significantly refracted at layer-layer interfaces due to the different mechanical properties of the contiguous layers, such as shear strength, friction coefficient and grain size. Detailed studies of different but coexisting and broadly coeval failure modes (tensile, hybrid and shear) within multilayers deformed in extensional settings have led to infer relatively low confinement and differential stress as the boundary stress conditions at which FFP refraction occurs. Although indeed widely recognized and studied in extensional settings, the details of FFP nucleation, propagation and refraction through multilayers remain not completely understood, partly because of the common lack of geological structures documenting the incipient and intermediate stages of deformation. Here, we present a study on strongly refracted strike-slip FFPs within the mechanically layered turbidites of the Marnoso Arenacea Formation (MAF) of the Italian northern Apennines. The MAF is characterized by the alternation of sandstone (strong) and carbonate mud-stone (weak) layers. The studied refracted FFPs formed at the front of the regional-scale NE-verging Palazzuolo anticline and post-date almost any other observed structure except for a set of late extensional faults. The studied faults document coexisting shear and hybrid (tensile-shear) failure modes and, at odds with existing models, we suggest that they initially nucleated as shear fractures (mode III) within the weak layers and, only at a later stage, propagated as di-latant fractures (modes I-II) within the strong layers. The tensile fractures within the strong layers invariably contain blocky calcite infills, which are, on the other hand, almost completely absent along the shear fracture planes deforming the weak layers. Paleostress analysis suggests that the refracted FFPs formed in a NNE-SSW compressional stress field and excludes the possibility that their present geometric attitude results from the rotation through time of faults with an initial different orientation. The relative slip and dilation potential of the observed structures was derived by slip and dilation tendency analysis. Mesoscopic analysis of preserved structures from the incipient and intermediate stages of development and evolution of the refracted FFPs allowed us to propose an evolutionary scheme wherein (a) nucleation of refracted FFPs occurs within weak layers; (b) refraction is primarily controlled by grain size and clay mineral content and variations thereof at layer-layer interfaces but also within individual layers; (c) propagation within strong layers occurs primarily by fluid-assisted development ahead of the FFP tip of a "process zone" defined by a network of hybrid and tensile fractures; (d) the process zone causes the progressive weakening and fragmentation of the affected rock volume to eventually allow the FFPs to propagate through the strong layers; (e) enhanced suitable conditions for the development of tensile and hybrid fractures can be also achieved thanks to the important role played by pressured fluids.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
  • [31] Estimating the Magnitude of Cyclic Slip on Strike-Slip faults on Europa
    Hammond, N. P.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (07) : no
  • [32] Mechanical behavior of buried steel pipes crossing active strike-slip faults
    Vazouras, Polynikis
    Karamanos, Spyros A.
    Dakoulas, Panos
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2012, 41 : 164 - 180
  • [33] MECHANICAL BEHAVIOR OF BURIED STEEL PIPELINES CROSSING STRIKE-SLIP SEISMIC FAULTS
    Vazouras, Polynikis
    Karamanos, Spyros A.
    Dakoulas, Panos
    OMAE2011: PROCEEDINGS OF THE ASME 30TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, VOL 4: PIPELINE AND RISER TECHNOLOGY, 2011, : 429 - +
  • [34] Elastoplastic Analysis of Mechanical Response of Buried Pipelines under Strike-Slip Faults
    Zhang, Lisong
    Zhao, Xinbo
    Yan, Xiangzhen
    Yang, Xiujuan
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2017, 17 (04)
  • [35] MECHANICAL ANALYSIS OF STRIKE-SLIP FAULTS .2. DISLOCATION MODEL STUDIES
    RODGERS, DA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (04): : 327 - 327
  • [36] Characteristics and Controlling Role in Hydrocarbon Accumulation of Strike-Slip Faults in the Maigaiti Slope
    Wang, Bin
    Chen, Changchao
    Shang, Jiangwei
    Lei, Ming
    Zhu, Wenhui
    Qu, Yang
    Sun, Di
    Sun, Chunyan
    Li, Li
    PROCESSES, 2023, 11 (04)
  • [37] Potential role of strike-slip faults in opening up the South China Sea
    Huang, Chi-Yue
    Wang, Pinxian
    Yu, Mengming
    You, Chen-Feng
    Liu, Char-Shine
    Zhao, Xixi
    Shao, Lei
    Zhong, Guangfa
    Yumul, Graciano P., Jr.
    NATIONAL SCIENCE REVIEW, 2019, 6 (05) : 891 - 901
  • [38] Potential role of strike-slip faults in opening up the South China Sea
    Chi-Yue Huang
    Pinxian Wang
    Mengming Yu
    Chen-Feng You
    Char-Shine Liu
    Xixi Zhao
    Lei Shao
    Guangfa Zhong
    Graciano P.Yumul Jr
    NationalScienceReview, 2019, 6 (05) : 891 - 901
  • [39] Spacing and strength of active continental strike-slip faults
    Zuza, Andrew V.
    Yin, An
    Lin, Jessica
    Sun, Ming
    EARTH AND PLANETARY SCIENCE LETTERS, 2017, 457 : 49 - 62