The uniform modulus of continuity of iterated Brownian motion

被引:26
|
作者
Khoshnevisan, D [1 ]
Lewis, TM [1 ]
机构
[1] FURMAN UNIV, DEPT MATH, GREENVILLE, SC 29613 USA
关键词
iterated Brownian motion; uniform modulus of continuity; the Ray-Knight theorem;
D O I
10.1007/BF02214652
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a Brownian motion defined on the line (with X(0) = 0) and let Y be an independent Brownian motion defined on the nonnegative real numbers. For all t greater than or equal to 0, we define the iterated Brownian motion (IBM), Z, by setting Z(t) corresponds to X(Y-t). In this paper we determine the exact uniform modulus of continuity of the process Z.
引用
收藏
页码:317 / 333
页数:17
相关论文
共 50 条
  • [21] Uniform modulus of continuity of random fields
    Yimin Xiao
    Monatshefte für Mathematik, 2010, 159 : 163 - 184
  • [22] Weighted power variations of iterated Brownian motion
    Nourdin, Ivan
    Peccati, Giovanni
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1229 - 1256
  • [23] The exit distribution for iterated Brownian motion in cones
    Bañuelos, R
    DeBlassie, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (01) : 36 - 69
  • [24] Iterated Brownian motion in bounded domains in Rn
    Nane, Erkan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (06) : 905 - 916
  • [25] Laws of the iterated logarithm for α-time Brownian motion
    Nane, Erkan
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 434 - 459
  • [26] Estimates of the uniform modulus of continuity for Bessel potentials
    M. L. Goldman
    A. V. Malysheva
    D. Haroske
    Doklady Mathematics, 2013, 87 : 282 - 285
  • [27] Estimates of the Uniform Modulus of Continuity for Bessel Potentials
    Goldman, M. L.
    Malysheva, A. V.
    Haroske, D.
    DOKLADY MATHEMATICS, 2013, 87 (03) : 282 - 285
  • [28] Iterated Brownian motion and its intrinsic skeletal structure
    Khoshnevisan, D
    Lewis, TM
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS, 1999, 45 : 201 - 210
  • [30] A law of iterated logarithm for the subfractional Brownian motion and an application
    Qi, Hongsheng
    Yan, Litan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,