Quantitative modeling of bubble competition in Richtmyer-Meshkov instability

被引:11
|
作者
Sohn, Sung-Ik [1 ]
机构
[1] Kangnung Natl Univ, Dept Math, Kangnung 210702, South Korea
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.017302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a quantitative model for the evolution of single and multiple bubbles in the Richtmyer-Meshkov (RM) instability. The higher-order solutions for a single-mode bubble are obtained, and distinctions between RM and Rayleigh-Taylor bubbles are investigated. The results for multiple-bubble competition from the model shows that the higher-order correction to the solution of the bubble curvature has a large influence on the growth rate of the RM bubble front. The model predicts that the bubble front of RM mixing grows as h similar to t(theta) with theta similar to(0.3-0.35)+/- 0.02.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244
  • [22] Theory of the ablative Richtmyer-Meshkov instability
    Goncharov, VN
    PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2091 - 2094
  • [23] Startup process in the Richtmyer-Meshkov instability
    Lombardini, M.
    Pullin, D. I.
    PHYSICS OF FLUIDS, 2009, 21 (04)
  • [24] Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability
    Chen, Feng
    Xu, Aiguo
    Zhang, Guangcai
    PHYSICS OF FLUIDS, 2018, 30 (10)
  • [25] Richtmyer-Meshkov instability and the dynamics of the magnetosphere
    Wu, CC
    Roberts, PH
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (06) : 655 - 658
  • [26] Relativistic effects on the Richtmyer-Meshkov instability
    Mohseni, F.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW D, 2014, 90 (12):
  • [27] Richtmyer-Meshkov Instability of Laminar Flame
    Tyaktev, A. A.
    Pavlenko, A., V
    Anikin, N. B.
    Bugaenko, I. L.
    Piskunov, Yu A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2020, 61 (02) : 157 - 161
  • [28] Richtmyer-Meshkov Instability in Nonlinear Optics
    Jia, Shu
    Huntley, Laura I.
    Fleischer, Jason W.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [29] Scaling the incompressible Richtmyer-Meshkov instability
    Cotrell, David L.
    Cook, Andrew W.
    PHYSICS OF FLUIDS, 2007, 19 (07)
  • [30] Theory of the Ablative Richtmyer-Meshkov Instability
    Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, United States
    Phys Rev Lett, 10 (2091-2094):