We present a quantitative model for the evolution of single and multiple bubbles in the Richtmyer-Meshkov (RM) instability. The higher-order solutions for a single-mode bubble are obtained, and distinctions between RM and Rayleigh-Taylor bubbles are investigated. The results for multiple-bubble competition from the model shows that the higher-order correction to the solution of the bubble curvature has a large influence on the growth rate of the RM bubble front. The model predicts that the bubble front of RM mixing grows as h similar to t(theta) with theta similar to(0.3-0.35)+/- 0.02.