Comparison of Gaussian process regression, partial least squares, random forest and support vector machines for a near infrared calibration of paracetamol samples
Paracetamol;
Near Infrared Spectroscopy;
Data preprocessing;
Nonlinear regression models;
Linear regression techniques;
COMPONENTS;
TABLETS;
D O I:
10.1016/j.rechem.2022.100508
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
In this article, we analyze the near-infrared (NIR) spectra of fifty-eight (58) commercial tablets of 500 mg of paracetamol from different origins (that is, with different batch numbers) in the local markets in Bamako. The NIR spectra were recorded in the spectral range 930 nm-1700 nm. The samples are divided into forty-eight (48) samples forming the set of calibration (training set) and ten (10) samples used as the validation or test set. To perform multivariate calibration, we apply-three nonlinear regression techniques (Gaussian processes regression (GPR), Random Forest (RF), Support vector machine (KSVM)), along with the traditional linear partial leastsquares regression (PLSR) to several data pretreatments of the 58 samples. The results show that the three nonlinear regression calibrations have better prediction performance than PLS as far as RMSE is concerned. To decide the best regression model, we avoid R2 since this quantity is not a good parameter for this purpose. We will instead consider RMSE when comparing the different multivariate models. Additionally, to assess the impact of data preprocessing, we apply the above regression techniques to the original data, Multi-scattering correction (MSC), standard variate normalization (SNV) correction, smoothing correction, first derivative (FD), and second derivative correction (SD). The overall results reveal that Gaussian Processes Regression (GPR) applied to smooth correction gives the lowest RMSEP = 2.303053e-06 for validation (prediction) and RMSEC = 2.112316e-06 for calibration. In our investigation, one also notices that the developed GPR model is more accurate and exhibits enhanced behavior no matter which data preprocessing is used. All in all, GPR can be seen as an alternative powerful regression tool for NIR spectra of paracetamol samples. The statistical parameters of the proposed model are compared to the results of some other models reported in the literature.
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cozzolino, D.
Kwiatkowski, M. J.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
Kwiatkowski, M. J.
Dambergs, R. G.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
Dambergs, R. G.
Cynkar, W. U.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cynkar, W. U.
Janik, L. J.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
Janik, L. J.
Skouroumounis, G.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
Skouroumounis, G.
Gishen, A.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Wine Res Inst, Glen Osmond, SA 5064, Australia
Cooperat Res Ctr Viticulture, Glen Osmond, SA 5064, AustraliaAustralian Wine Res Inst, Glen Osmond, SA 5064, Australia
机构:
Univ Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, IranUniv Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran
Shabani, Sevda
论文数: 引用数:
h-index:
机构:
Samadianfard, Saeed
Sattari, Mohammad Taghi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran
Ankara Univ, Fac Agr, Dept Farm Struct & Irrigat, Ankara, TurkeyUniv Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran
Sattari, Mohammad Taghi
Mosavi, Amir
论文数: 0引用数: 0
h-index: 0
机构:
Obuda Univ, Kalman Kando Fac Elect Engn, Inst Automat, H-1034 Budapest, Hungary
Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
Queensland Univ Technol, Fac Hlth, Brisbane, Qld 4059, Australia
Oxford Brookes Univ, Sch Built Environm, Oxford OX3 0BP, EnglandUniv Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran
Mosavi, Amir
Shamshirband, Shahaboddin
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, VietnamUniv Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran
Shamshirband, Shahaboddin
Kmet, Tibor
论文数: 0引用数: 0
h-index: 0
机构:
J Selye Univ, Dept Math & Informat, Komarno 94501, SlovakiaUniv Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran
Kmet, Tibor
Varkonyi-Koczy, Annamaria R.
论文数: 0引用数: 0
h-index: 0
机构:
Obuda Univ, Kalman Kando Fac Elect Engn, Inst Automat, H-1034 Budapest, Hungary
J Selye Univ, Dept Math & Informat, Komarno 94501, SlovakiaUniv Tabriz, Fac Agr, Dept Water Engn, Tabriz 51666, Iran