Comparison of Gaussian process regression, partial least squares, random forest and support vector machines for a near infrared calibration of paracetamol samples

被引:4
|
作者
Sow, Aminata [1 ]
Traore, Issiaka [1 ]
Diallo, Tidiane [2 ,3 ]
Traore, Mohamed [4 ]
Ba, Abdramane [1 ]
机构
[1] Univ Sci Tech & Technol Bamako, Fac Sci & Tech FST, Lab Opt Spect & Sci Atmospher LOSSA, Bamako, Mali
[2] Univ Sci Tech & Technol Bamako, Fac Pharm, Dept Sci Medicament, Bamako, Mali
[3] Lab Natl Sante LNS, Bamako, Mali
[4] Ecole Natl Ingn Abderhamane Baba Toure, Bamako, Mali
关键词
Paracetamol; Near Infrared Spectroscopy; Data preprocessing; Nonlinear regression models; Linear regression techniques; COMPONENTS; TABLETS;
D O I
10.1016/j.rechem.2022.100508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this article, we analyze the near-infrared (NIR) spectra of fifty-eight (58) commercial tablets of 500 mg of paracetamol from different origins (that is, with different batch numbers) in the local markets in Bamako. The NIR spectra were recorded in the spectral range 930 nm-1700 nm. The samples are divided into forty-eight (48) samples forming the set of calibration (training set) and ten (10) samples used as the validation or test set. To perform multivariate calibration, we apply-three nonlinear regression techniques (Gaussian processes regression (GPR), Random Forest (RF), Support vector machine (KSVM)), along with the traditional linear partial leastsquares regression (PLSR) to several data pretreatments of the 58 samples. The results show that the three nonlinear regression calibrations have better prediction performance than PLS as far as RMSE is concerned. To decide the best regression model, we avoid R2 since this quantity is not a good parameter for this purpose. We will instead consider RMSE when comparing the different multivariate models. Additionally, to assess the impact of data preprocessing, we apply the above regression techniques to the original data, Multi-scattering correction (MSC), standard variate normalization (SNV) correction, smoothing correction, first derivative (FD), and second derivative correction (SD). The overall results reveal that Gaussian Processes Regression (GPR) applied to smooth correction gives the lowest RMSEP = 2.303053e-06 for validation (prediction) and RMSEC = 2.112316e-06 for calibration. In our investigation, one also notices that the developed GPR model is more accurate and exhibits enhanced behavior no matter which data preprocessing is used. All in all, GPR can be seen as an alternative powerful regression tool for NIR spectra of paracetamol samples. The statistical parameters of the proposed model are compared to the results of some other models reported in the literature.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Comparison of partial least squares regression, least squares support vector machines, and Gaussian process regression for a near infrared calibration
    Cui, Chenhao
    Fearn, Tom
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2017, 25 (01) : 5 - 14
  • [2] Variable selection in random calibration of near-infrared instruments: ridge regression and partial least squares regression settings
    Gusnanto, A
    Pawitan, Y
    Huang, J
    Lane, B
    JOURNAL OF CHEMOMETRICS, 2003, 17 (03) : 174 - 185
  • [3] Random Forest Regression Based on Partial Least Squares
    Hao, Zhulin
    Du, Jianqiang
    Nie, Bin
    Yu, Fang
    Yu, Riyue
    Xiong, Wangping
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [4] The application of localisation to near infrared calibration and prediction through partial least squares regression
    Anderssen, RS
    Osborne, BG
    Wesley, IJ
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2003, 11 (01) : 39 - 48
  • [5] Multivariate calibration with least-squares support vector machines
    Thissen, U
    Üstün, B
    Melssen, WJ
    Buydens, LMC
    ANALYTICAL CHEMISTRY, 2004, 76 (11) : 3099 - 3105
  • [6] Imposing symmetry in Least Squares Support Vector Machines regression
    Espinoza, Marcelo
    Suykens, Johan A. K.
    De Moor, Bart
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5716 - 5721
  • [7] Extended least squares support vector machines for ordinal regression
    Zhang, Na
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (06): : 1497 - 1509
  • [8] Extended least squares support vector machines for ordinal regression
    Na Zhang
    Neural Computing and Applications, 2016, 27 : 1497 - 1509
  • [9] Efficient Sparse Least Squares Support Vector Machines for Regression
    Si Gangquan
    Shi Jianquan
    Guo Zhang
    Zhao Weili
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5173 - 5178
  • [10] Application of latent root regression for calibration in near-infrared spectroscopy. Comparison with principal component regression and partial least squares
    Vigneau, E
    Bertrand, D
    Qannari, EM
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1996, 35 (02) : 231 - 238