Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding

被引:187
|
作者
He, Peng [1 ]
Wang, Xi-Xi [1 ]
Cai, Yong-Zhu [1 ]
Shu, Jin-Cheng [1 ]
Zhao, Quan-Liang [2 ]
Yuan, Jie [3 ]
Cao, Mao-Sheng [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] North China Univ Technol, Sch Mech & Mat Engn, Beijing 100144, Peoples R China
[3] Minzu Univ China, Sch Informat Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROWAVE-ABSORPTION PROPERTIES; TITANIUM CARBIDE MXENE; REDUCED GRAPHENE OXIDES; WAVE ABSORPTION; FACILE PREPARATION; CARBON NANOTUBES; COMPOSITE FOAMS; LIGHTWEIGHT; DESIGN; ENHANCEMENT;
D O I
10.1039/c8nr10489a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Environmentally friendly materials that exhibit high-performance electromagnetic interference (EMI) shielding are extremely necessary. Herein, we fabricated ultrathin Ti3C2Tx (U-Ti3C2Tx) MXene nanosheets (NS) by atomic-layer tailoring the layer thickness of Ti3C2Tx MXene. The U-Ti3C2Tx NS composites with highly efficient EMI shielding effectiveness can reduce secondary reflection, demonstrating its environmentally friendly performance. The U-Ti3C2Tx NS composite with 80 wt% loading exhibits an EMI shielding effectiveness of 58.1 dB at a thickness of 1 mm. Shielding performance analysis of different layer thicknesses shows that electron transport has an important contribution to the EMI shielding performance. Furthermore, the polarization induced by defects and terminal atoms plays an important role in the EMI shielding performance. Based on the electromagnetic (EM) wave response mechanism, a novel approach to effectively tune the EMI attenuation and shielding effectiveness can be achieved by adjusting the local conductive network. These findings will offer an effective strategy for designing environmentally friendly 2D materials with high-performance EMI shielding.
引用
收藏
页码:6080 / 6088
页数:9
相关论文
共 50 条
  • [41] Vulcanization of Ti3C2Tx MXene/natural rubber composite films for enhanced electromagnetic interference shielding
    Wang, Yanqin
    Liu, Ruiting
    Zhang, Jianfeng
    Miao, Miao
    Feng, Xin
    APPLIED SURFACE SCIENCE, 2021, 546
  • [42] Highly Efficient Adsorption of Bilirubin by Ti3C2Tx MXene
    Sun, Xiaoyu
    Yang, Jian
    Su, Dawei
    Wang, Chengyin
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (14) : 1949 - 1955
  • [43] Research Progress of Electromagnetic Shielding Performance of MXene (Ti3C2Tx) Composites
    Han, Yue
    Jia, Ying
    Chen, Guangxue
    INNOVATIVE TECHNOLOGIES FOR PRINTING AND PACKAGING, 2023, 991 : 621 - 635
  • [44] Ti3C2Tx MXene/polyimide composites film with excellent mechanical properties and electromagnetic interference shielding properties
    Chu, Na
    Luo, Chunjia
    Chen, Xushuai
    Li, Liuxin
    Liang, Chaobo
    Chao, Min
    Yan, Luke
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 955
  • [45] Ultrathin cellulose nanofiber/carbon nanotube/Ti3C2Tx film for electromagnetic interference shielding and energy storage
    Wang, Beibei
    Li, Yanchen
    Zhang, Weiye
    Sun, Jingmeng
    Zhao, Junqi
    Xu, Yuzhi
    Liu, Yi
    Guo, Hongwu
    Zhang, Daihui
    CARBOHYDRATE POLYMERS, 2022, 286
  • [46] Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications
    Duan, Ningmin
    Shi, Zhenyu
    Wang, Zhaohui
    Zou, Bin
    Zhang, Chengpeng
    Wang, Jilai
    Xi, Jianren
    Zhang, Xiaoshuai
    Zhang, Xianzhi
    Wang, Guilong
    MATERIALS & DESIGN, 2022, 214
  • [47] Design of 3D lightweight Ti3C2Tx MXene porous film with graded holes for efficient electromagnetic interference shielding performance
    Chen, Qianqian
    Fan, Bingbing
    Zhang, Qipeng
    Wang, Shun
    Cui, Wei
    Jia, Yunchao
    Xu, Sankui
    Zhao, Biao
    Zhang, Rui
    CERAMICS INTERNATIONAL, 2022, 48 (10) : 14578 - 14586
  • [48] Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding
    Sambyal, Pradeep
    Iqbal, Aamir
    Hong, Junpyo
    Kim, Hyerim
    Kim, Myung-Ki
    Hong, Soon Man
    Han, Meikang
    Gogotsi, Yury
    Koo, Chong Min
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) : 38046 - 38054
  • [49] 3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding
    Hong, Sung Yong
    Sun, Yan
    Lee, Jinwoo
    Yifei, Ma
    Wang, Mei
    Nam, Jae-Do
    Suhr, Jonghwan
    POLYMER, 2021, 236
  • [50] 3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding
    Hong, Sung Yong
    Sun, Yan
    Lee, Jinwoo
    Yifei, Ma
    Wang, Mei
    Nam, Jae-Do
    Suhr, Jonghwan
    Polymer, 2021, 236