An Efficient Surrogate Modeling Approach in Bayesian Uncertainty Analysis

被引:0
|
作者
Zhang, Guannan [1 ]
Lu, Dan [2 ]
Ye, Ming [2 ]
Gunzburger, Max [2 ]
Webster, Clayton [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
关键词
Uncertainty quantification; Bayesian inference; sparse grids; importance sampling; SPARSE GRIDS;
D O I
10.1063/1.4825643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an efficient sparse-grid Bayesian approach for quantifying parametric and predictive uncertainties of physical systems constrained by stochastic PDEs. An accurate surrogate posterior distribution is constructed using sparse-grid interpolation and integration. It improves the simulation efficiency by accelerating the evaluation of the posterior distribution without losing much accuracy, and by determining an appropriate importance density for importance sampling which is easily sampled and captures the main features of the exact posterior distribution.
引用
收藏
页码:898 / 901
页数:4
相关论文
共 50 条
  • [21] Data-Efficient Sensitivity Analysis with Surrogate Modeling
    Van Steenkiste, Tom
    van der Herten, Joachim
    Couckuyt, Ivo
    Dhaene, Tom
    UNCERTAINTY MODELING FOR ENGINEERING APPLICATIONS, 2019, : 55 - 69
  • [22] Efficient Bilevel Surrogate Approach for Optimization Under Uncertainty of Shock Control Bumps
    Sabater, Christian
    Bekemeyer, Philipp
    Gortz, Stefan
    AIAA JOURNAL, 2020, 58 (12) : 5228 - 5242
  • [23] Multifidelity Surrogate Models for Efficient Uncertainty Propagation Analysis in Salars Systems
    Christelis, Vasileios
    Hughes, Andrew G.
    FRONTIERS IN WATER, 2022, 4
  • [24] Efficient Calibration/Uncertainty Analysis Using Paired Complex/Surrogate Models
    Burrows, Wesley
    Doherty, John
    GROUNDWATER, 2015, 53 (04) : 531 - 541
  • [25] AN EFFICIENT APPROACH TO QUANTIFY UNCERTAINTY IN COHORT MODELING IN R
    Yang, Alan
    Enns, Eva A.
    Alarid-Escudero, Fernando
    Jalal, Hawre
    Krijkamp, Eline
    Pechlivanoglou, Petros
    MEDICAL DECISION MAKING, 2020, 40 (01) : E184 - E185
  • [26] Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers
    Zacchei, Filippo
    Rizzini, Francesco
    Gattere, Gabriele
    Frangi, Attilio
    Manzoni, Andrea
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 167
  • [27] Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error
    Zhang, Jiangjiang
    Zheng, Qiang
    Chen, Dingjiang
    Wu, Laosheng
    Zeng, Lingzao
    WATER RESOURCES RESEARCH, 2020, 56 (01)
  • [28] Water quality modeling for load reduction under uncertainty: A Bayesian approach
    Liu, Yong
    Yang, Pinjian
    Hu, Cheng
    Guo, Huaicheng
    WATER RESEARCH, 2008, 42 (13) : 3305 - 3314
  • [29] Modeling Emotions Associated With Novelty at Variable Uncertainty Levels: A Bayesian Approach
    Yanagisawa, Hideyoshi
    Kawamata, Oto
    Ueda, Kazutaka
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13
  • [30] A Comparison of Bayesian Methods for Uncertainty Analysis inHydraulic and Hydrodynamic Modeling
    Camacho, Rene A.
    Martin, James L.
    McAnally, William
    Diaz-Ramirez, Jairo
    Rodriguez, Hugo
    Sucsy, Peter
    Zhang, Song
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2015, 51 (05): : 1372 - 1393