Learning Approximate Cost-to-Go Metrics To Improve Sampling-based Motion Planning

被引:0
|
作者
Li, Yanbo [1 ]
Bekris, Kostas E. [1 ]
机构
[1] Univ Nevada, Comp Sci & Engn Dept, Reno, NV 89557 USA
来源
2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2011年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sampling-based planners have been shown to be effective in searching unexplored parts of a system's state space. Their desirable properties, however, depend on the availability of an appropriate metric, which is often difficult to be defined for some robots, such as non-holonomic and under-actuated ones. This paper investigates a methodology to approximate optimum cost-to-go metrics by employing an offline learning phase in an obstacle-free workspace. The proposed method densely samples a graph that approximates the connectivity properties of the state space. This graph can be used online to compute approximate distances between states using nearest neighbor queries and standard graph search algorithms, such as A*. Unfortunately, this process significantly increases the online cost of a sampling-based planner. This work then investigates ways for the computationally efficient utilization of the learned metric during the planner's online operation. One idea is to map the sampled states into a higher-dimensional Euclidean space through multi-dimensional scaling that retains the relative distances represented by the sampled graph. Simulations on a first-order car and on an illustrative example of an asymmetric state space indicate that the approach has merit and can lead into more effective planning.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Quantum Search Approaches to Sampling-Based Motion Planning
    Lathrop, Paul
    Boardman, Beth
    Martinez, Sonia
    IEEE ACCESS, 2023, 11 : 89506 - 89519
  • [32] The Toggle Local Planner for Sampling-Based Motion Planning
    Denny, Jory
    Amato, Nancy M.
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1779 - 1786
  • [33] Enhancing sampling-based kinodynamic motion planning for quadrotors
    Boeuf, Alexandre
    Cortes, Juan
    Alami, Rachid
    Simeon, Thierry
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 2447 - 2452
  • [34] Sampling-based roadmap of trees for parallel motion planning
    Plaku, E
    Bekris, KE
    Chen, BY
    Ladd, AM
    Kavraki, LE
    IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (04) : 597 - 608
  • [35] Anytime Solution Optimization for Sampling-Based Motion Planning
    Luna, Ryan
    Sucan, Ioan A.
    Moll, Mark
    Kavraki, Lydia E.
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5068 - 5074
  • [36] Sampling-based Motion Planning with Deterministic μ-Calculus Specifications
    Karaman, Sertac
    Frazzoli, Emilio
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 2222 - 2229
  • [37] Balancing Exploration and Exploitation in Sampling-Based Motion Planning
    Rickert, Markus
    Sieverling, Arne
    Brock, Oliver
    IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (06) : 1305 - 1317
  • [38] Scaling Sampling-based Motion Planning to Humanoid Robots
    Yang, Yiming
    Ivan, Vladimir
    Merkt, Wolfgang
    Vijayakumar, Sethu
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 1448 - 1454
  • [39] Parallel Sampling-Based Motion Planning with Superlinear Speedup
    Ichnowski, Jeffrey
    Alterovitz, Ron
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1206 - 1212
  • [40] Sampling-based optimal kinodynamic planning with motion primitives
    Sakcak, Basak
    Bascetta, Luca
    Ferretti, Gianni
    Prandini, Maria
    AUTONOMOUS ROBOTS, 2019, 43 (07) : 1715 - 1732