Effect of pressure on through-plane proton conductivity of polymer electrolyte membranes

被引:30
|
作者
Yun, Sung-Hyun [1 ]
Shin, Sung-Hee [1 ]
Lee, Ju-Young [1 ]
Seo, Seok-Jun [1 ]
Oh, Se-Hun [1 ]
Choi, Young-Woo [2 ]
Moon, Seung-Hyeon [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea
[2] Korea Inst Energy Res, Fuel Cell Res Ctr, Taejon 305600, South Korea
关键词
Polymer electrolyte membranes; Electrochemical impedance spectroscopy; Through-plane conductivity; Anisotropic conduction; Contact resistance; IMPEDANCE SPECTROSCOPY; NAFION MEMBRANES; FUEL-CELLS; TRANSPORT;
D O I
10.1016/j.memsci.2012.06.041
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study reports an electrochemical analogy with the invention of a 2-electrode impedance cell oriented to analyze through-plane ionic conductivity of polymer electrolyte membranes. The membranes are utilized under varied pressures in assembled membrane stacks for water treatment, energy conversion, and storage devices. In addition, polymeric membranes are a viscoelastic material, which allow their shape to change according to the external pressure. Therefore, the impedance under controlled pressure is crucial information for analyzing their electrochemical properties. In this regards, an apparatus is designed to indicate the absolute pressure in the sample and the resulting thickness of the sample while measuring the impedance. As a model analysis, we employ a proton conducting membrane, Nafion (R) 117, Nafion (R) 115, and Nafion (R) 112. The membrane thickness in a wet state was found to be significantly variable with the pressure, and the impedance spectra showed a clear dependence on the pressure. Therefore, this new approach facilitates a precise impedance analysis, since the exact sample thickness is indicated, along with the absolute pressure in the sample. As such, this technique could be a useful tool for analyzing the through-plane conductivity of polymer electrolyte membranes with high accuracy. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:210 / 216
页数:7
相关论文
共 50 条
  • [41] Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers
    Burheim, Odne S.
    Pharoah, Jon G.
    Lampert, Hannah
    Vie, Preben J. S.
    Kjelstrup, Signe
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (02):
  • [42] Methodology development for through-plane thermal conductivity prediction of composites
    Suplicz, A.
    Hargitai, H.
    Kovacs, J. G.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 100 : 54 - 59
  • [43] A critical investigation of the effect of hygrothermal cycling on hydration and in-plane/through-plane proton conductivity of Nafion 117 at medium temperature (70-130 °C)
    Casciola, Mario
    Donnadio, Anna
    Sassi, Paola
    JOURNAL OF POWER SOURCES, 2013, 235 : 129 - 134
  • [44] The Evaluation of Ionic Conductivity in Polymer Electrolyte Membranes
    Vaireanu, Danut-Ionel
    Maior, Ioana
    Grigore, Alexandra
    Savoiu, David
    REVISTA DE CHIMIE, 2008, 59 (10): : 1140 - 1142
  • [45] Contaminant absorption and conductivity in polymer electrolyte membranes
    Kelly, MJ
    Fafilek, G
    Besenhard, JO
    Kronberger, H
    Nauer, GE
    JOURNAL OF POWER SOURCES, 2005, 145 (02) : 249 - 252
  • [46] Mechanisms of proton conductance in polymer electrolyte membranes
    Eikerling, M
    Kornyshev, AA
    Kuznetsov, AM
    Ulstrup, J
    Walbran, S
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (17): : 3646 - 3662
  • [47] Estimation of the through-plane thermal conductivity of polymeric ion-exchange membranes using finite element technique
    Barragan, V. M.
    Izquierdo-Gil, M. A.
    Maroto, J. C.
    Antoranz, P.
    Munoz, S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176
  • [48] Expanded graphite/graphene composites for high through-plane thermal conductivity
    Fan, Yuyuan
    Wang, Zeyu
    Guo, Xing
    Yang, Sufang
    Jia, Hui
    Tao, Zechao
    Liu, Jinxing
    Yan, Xi
    Liu, Zhanjun
    Li, Junfen
    DIAMOND AND RELATED MATERIALS, 2024, 143
  • [49] Through-Plane Water Distribution in a Polymer Electrolyte Fuel Cell: Comparison of Numerical Prediction with Neutron Radiography Data
    Wang, Yun
    Chen, Ken S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) : B1878 - B1886
  • [50] Impact of channel wall hydrophobicity on through-plane water distribution and flooding behavior in a polymer electrolyte fuel cell
    Turhan, Ahmet
    Kim, Soowhan
    Hatzell, Marta
    Mench, Matthew M.
    ELECTROCHIMICA ACTA, 2010, 55 (08) : 2734 - 2745