PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS

被引:13
|
作者
Jego, Antoine [1 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
来源
ANNALS OF PROBABILITY | 2020年 / 48卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Brownian motion; local times; Gaussian multiplicative chaos; thick points; POINTS;
D O I
10.1214/19-AOP1399
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct the analogue of Gaussian multiplicative chaos measures for the local times of planar Brownian motion by exponentiating the square root of the local times of small circles. We also consider a flat measure supported on points whose local time is within a constant of the desired thickness level and show a simple relation between the two objects. Our results extend those of (Ann. Probab. 22 (1994) 566-625), and in particular, cover the entire L-1-phase or subcritical regime. These results allow us to obtain a nondegenerate limit for the appropriately rescaled size of thick points, thereby considerably refining estimates of (Acta Math. 186 (2001) 239-270).
引用
收藏
页码:1597 / 1643
页数:47
相关论文
共 50 条
  • [21] THE MULTIPLICATIVE CHAOS OF H=0 FRACTIONAL BROWNIAN FIELDS
    Hager, Paul
    Neuman, Eyal
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 2139 - 2179
  • [22] Gaussian multiplicative chaos for the sine-process
    Bufetov, A. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 1155 - 1157
  • [23] Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
    Laurent Chevillard
    Rémi Rhodes
    Vincent Vargas
    Journal of Statistical Physics, 2013, 150 : 678 - 703
  • [24] The classical compact groups and Gaussian multiplicative chaos
    Forkel, Johannes
    Keating, Jonathan P.
    NONLINEARITY, 2021, 34 (09) : 6050 - 6119
  • [25] THE DISTRIBUTION OF GAUSSIAN MULTIPLICATIVE CHAOS ON THE UNIT INTERVAL
    Remy, Guillaume
    Zhu, Tunan
    ANNALS OF PROBABILITY, 2020, 48 (02): : 872 - 915
  • [26] Multifractal analysis of Gaussian multiplicative chaos and applications
    Bertacco, Federico
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [27] Universal tail profile of Gaussian multiplicative chaos
    Wong, Mo Dick
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (3-4) : 711 - 746
  • [28] Random Hermitian matrices and Gaussian multiplicative chaos
    Nathanaël Berestycki
    Christian Webb
    Mo Dick Wong
    Probability Theory and Related Fields, 2018, 172 : 103 - 189
  • [29] Lee–Yang Property and Gaussian Multiplicative Chaos
    Charles M. Newman
    Wei Wu
    Communications in Mathematical Physics, 2019, 369 : 153 - 170
  • [30] Universal tail profile of Gaussian multiplicative chaos
    Mo Dick Wong
    Probability Theory and Related Fields, 2020, 177 : 711 - 746