Optimization of Base Catalytic Methanolysis of Sunflower (Helianthus annuus) Seed Oil for Biodiesel Production by Using Response Surface Methodology

被引:48
|
作者
Rashid, Umer [1 ]
Anwar, Farooq [1 ]
Arif, Muhammad [2 ]
机构
[1] Univ Agr Faisalabad, Dept Chem & Biochem, Faisalabad 38040, Pakistan
[2] Univ Agr Faisalabad, Dept Math & Stat, Faisalabad 38040, Pakistan
关键词
JATROPHA-CURCAS; TRANSESTERIFICATION; YIELDS; FUELS;
D O I
10.1021/ie801136h
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the present work, the response surface methodology (RSM), based on a central composite rotatable design (CCRD), was used to determine the optimum conditions for the methanolysis of sunflower (Helianthus annuus) crude oil. Four process variables were evaluated at two levels (24 experimental design): the methanol/oil molar ratio (3:1-9:1), the catalyst concentration in relation to the oil mass (0.2-1.2 wt % KOH), the reaction temperature (35-65 degrees C), and the alcoholysis reaction time (10-120 min). Using RSM, a quadratic polynomial equation was obtained by multiple regression analysis for predicting the optimization of the transesterification reaction. The results indicated that the methanol-oil-molar ratio, catalyst concentration, and reaction temperature were the significant parameters affecting the yield of sunflower oil methyl esters (SOMEs/biodiesel). The optimum transesterification reaction conditions, established using RSM, which offered 97.8% SOME yield, were found to be 6.0:1.0 methanol-to-oil ratio, 0.70% catalyst concentration, 50 degrees C reaction temperature; and 65-min reaction time. The proposed process provided an average biodiesel yield of more than 91 %. A linear relationship was constructed between the observed and predicted values of yield. The biodiesel produced in the present experiments was analyzed by gas chromatography (GC), which showed that it mainly contained four fatty acid methyl esters (linoleic, oleic, palmitic, and stearic acids). The nuclear magnetic resonance (H-1 NMR) spectrum of the SOMEs is also reported. The fuel properties of the SOMEs such as density, cetane number, kinematic viscosity, oxidative stability, lubricity, cloud point, pour point, cold filter plugging point, flash point, ash content, sulfur content, acid value, copper strip corrosion value, and higher heating value were determined and are discussed in light of biodiesel standards ASTM D6751 and EN 14214.
引用
收藏
页码:1719 / 1726
页数:8
相关论文
共 50 条
  • [31] Optimization of sunflower oil bleaching parameters: using Response Surface Methodology (RSM)
    Sedaghat Boroujeni, Leila
    Ghavami, Mehrdad
    Piravi Vanak, Zahra
    Ghasemi Pirbalouti, Abdollah
    FOOD SCIENCE AND TECHNOLOGY, 2020, 40 : 322 - 330
  • [32] Experimental optimization of Waste Cooking Oil ethanolysis for biodiesel production using Response Surface Methodology (RSM)
    Danane, Fetta
    Bessah, Rahma
    Alloune, Rhiad
    Tebouche, Latifa
    Madjene, Farid
    Kheirani, Ahmed Yasser
    Bouabibsa, Reda
    SCIENCE AND TECHNOLOGY FOR ENERGY TRANSITION, 2022, 77
  • [33] Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology
    Enweremadu, Christopher C.
    Rutto, Hilary L.
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2015, 37 (02): : 256 - 265
  • [34] Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology
    Ghadge, SV
    Raheman, H
    BIORESOURCE TECHNOLOGY, 2006, 97 (03) : 379 - 384
  • [35] Response Surface Methodology Based Process Optimization for Biodiesel Production using Cottonseed Oil: A Comparative Study
    Mumtaz, Muhammad Waseem
    Adnan, Ahmed
    Mukhtar, Hamid
    Anwar, Farooq
    Ahmad, Zahoor
    Qureshi, Fahim Ashraf
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (03) : 1075 - 1081
  • [36] Optimization of ultrasound-assisted base-catalyzed methanolysis of sunflower oil using response surface and artifical neural network methodologies
    Rajkovic, Katarina M.
    Avramovic, Jelena M.
    Milic, Petar S.
    Stamenkovic, Olivera S.
    Veljkovic, Vlada B.
    CHEMICAL ENGINEERING JOURNAL, 2013, 215 : 82 - 89
  • [37] Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology
    Nayak, Milap G.
    Vyas, Amish P.
    RENEWABLE ENERGY, 2019, 138 : 18 - 28
  • [38] A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources
    Manojkumar N.
    Muthukumaran C.
    Sharmila G.
    Journal of King Saud University - Engineering Sciences, 2022, 34 (03) : 198 - 208
  • [39] Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol
    Silva, Giovanilton F.
    Camargo, Fernando L.
    Ferreira, Andrea L. O.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (03) : 407 - 413
  • [40] Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: Optimization using Response Surface Methodology
    Jain, Monika
    Garg, V. K.
    Kadirvelu, K.
    BIORESOURCE TECHNOLOGY, 2011, 102 (02) : 600 - 605