Controlling the Thermal Conductivity of Monolayer Graphene with Kirigami Structure

被引:0
|
作者
Gao, Yuan [1 ]
Lu, Shuaijie [1 ]
Chen, Weiqiang [2 ]
Zhang, Jinyuan [3 ]
Feng, Chundi [2 ]
Liu, Yanming [4 ]
机构
[1] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
[2] Univ Manchester, Sch Engn, Dept Mech Aerosp & Civil Engn, Manchester M13 9PL, England
[3] Nantong Univ, Sch Life Sci, Nantong 226019, Peoples R China
[4] Monash Univ, Sch Publ Hlth & Prevent Med, Melbourne, Vic 3004, Australia
关键词
graphene-based membrane; kirigami structure; molecular dynamics simulation; thermal conductivity; adjustability; MOLECULAR-DYNAMICS; NANOMATERIALS; ELECTRON;
D O I
10.3390/membranes12111128
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this work, the thermal conductivity performance of graphene kirigami (GK) was systematically investigated via molecular dynamics (MD) simulations. The results indicate that the degree of defects (DD) on GK has a significant influence on thermal conductivity. Reducing the DD is the most effective way to decrease the thermal conductivity of GK. For zigzag-incised GK sheets, the change rate of thermal conductivity can reach up to 1.86 W/mK per 1% change in DD by tuning the incision length. The rate of changing thermal conductivity with DD can be slowed down by changing the width among incisions. Compared with the zigzag-incised GK sheets, heat transfer across the armchair-incised GK comes out more evenly, without significant steep and gentle stages along the heat transfer routes. More importantly, the GK structure can adjust the thermal conductivity by stretching, which the previously reported nanoporous graphene does not have. The change rate of thermal conductivity achieves about 0.17 W/mK with 1% stretching strain for simulated GK and can be further reduced at high tensile strain rates, benefiting the precise and variable control of the thermal conductivity of the monolayer graphene.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] High thermal conductivity of graphene and structure defects:Prospects for thermal applications in graphene sheets
    Chenglong Cai
    Ting Wang
    Guanwen Qu
    Zhangqi Feng
    Chinese Chemical Letters, 2021, 32 (04) : 1293 - 1298
  • [22] High thermal conductivity of graphene and structure defects: Prospects for thermal applications in graphene sheets
    Cai, Chenglong
    Wang, Ting
    Qu, Guanwen
    Feng, Zhangqi
    CHINESE CHEMICAL LETTERS, 2021, 32 (04) : 1293 - 1298
  • [23] Complex conductivity of monolayer graphene and Zitterbewegung
    Firsova, N. E.
    Ktitorov, S. A.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (03) : 226 - 228
  • [24] Electrons scattering and conductivity in monolayer graphene
    Firsova, Natalie E.
    Ktitorov, Sergey A.
    APPLIED SURFACE SCIENCE, 2013, 267 : 189 - 191
  • [25] Controlling structure and interfacial interaction of monolayer TaSe2 on bilayer graphene
    Lee, Hyobeom
    Im, Hayoon
    Choi, Byoung Ki
    Park, Kyoungree
    Chen, Yi
    Ruan, Wei
    Zhong, Yong
    Lee, Ji-Eun
    Ryu, Hyejin
    Crommie, Michael F.
    Shen, Zhi-Xun
    Hwang, Choongyu
    Mo, Sung-Kwan
    Hwang, Jinwoong
    NANO CONVERGENCE, 2024, 11 (01)
  • [26] Graphene kirigami
    Melina K. Blees
    Arthur W. Barnard
    Peter A. Rose
    Samantha P. Roberts
    Kathryn L. McGill
    Pinshane Y. Huang
    Alexander R. Ruyack
    Joshua W. Kevek
    Bryce Kobrin
    David A. Muller
    Paul L. McEuen
    Nature, 2015, 524 : 204 - 207
  • [27] Graphene kirigami
    Blees, Melina K.
    Barnard, Arthur W.
    Rose, Peter A.
    Roberts, Samantha P.
    McGill, Kathryn L.
    Huang, Pinshane Y.
    Ruyack, Alexander R.
    Kevek, Joshua W.
    Kobrin, Bryce
    Muller, David A.
    McEuen, Paul L.
    NATURE, 2015, 524 (7564) : 204 - +
  • [28] Effect of wall interaction on the structure and thermal conductivity of confined monolayer water
    Zhixiang, Zhao
    Nan, Sun
    Yonghui, Jin
    Xiang, Huang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (02)
  • [29] Properties of Graphene-Related Materials Controlling the Thermal Conductivity of Their Polymer Nanocomposites
    Colonna, Samuele
    Battegazzore, Daniele
    Eleuteri, Matteo
    Arrigo, Rossella
    Fina, Alberto
    NANOMATERIALS, 2020, 10 (11) : 1 - 20
  • [30] Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene
    Wei, Xiaolin
    Wang, Yongchun
    Shen, Yulu
    Xie, Guofeng
    Xiao, Huaping
    Zhong, Jianxin
    Zhang, Gang
    APPLIED PHYSICS LETTERS, 2014, 105 (10)