A comparison of pyrrhotite rejection and passivation in two nickel ores

被引:17
|
作者
Chimbganda, T. [1 ]
Becker, M. [1 ]
Broadhurst, J. L. [1 ]
Harrison, S. T. L. [1 ]
Franzidis, J. -P. [1 ]
机构
[1] Univ Cape Town, Dept Chem Engn, Minerals Met Initiat, ZA-7701 Rondebosch, South Africa
基金
新加坡国家研究基金会;
关键词
Acid rock drainage; Pyrrhotite rejection; Pyrrhotite passivation; Polyethylene polyamines; X-RAY PHOTOELECTRON; DEPRESSION MECHANISM; SULFIDE MINERALS; PYRITE OXIDATION; PH; 9.3; PENTLANDITE; FLOTATION; IRON; SURFACES;
D O I
10.1016/j.mineng.2013.03.031
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The non-stoichiometric sulfide mineral pyrrhotite (Fel-xS) occurs almost ubiquitously inter-grown with the principal nickel mineral, pentlandite ((Fe,Ni)9S8). During Ni processing, pyrrhotite is generally rejected to the tailings stream by flotation to produce a low tonnage, high grade (Ni) smelter feed and reduce SO2 emissions. In this study, the effect of different pyrrhotite flotation rejection strategies (artificial oxidation and TETA: SMBS addition) are evaluated on a magnetic (Ore A) and non-magnetic (Ore B) pyrrhotite ore to determine if either may effectively depress and potentially passivate the pyrrhotite surface during flotation to produce benign tailings without compromising pentlandite recovery. For both ores, the best pyrrhotite rejection (pentlandite/pyrrhotite recovery) was obtained using TETA: SMBS. Differences in the flotation performance of the two ores are considered more a function of BMS content, liberation and ore handling rather than a difference in sulfide passivation from the inherent pyrrhotite mineralogy (magnetic vs non-magnetic pyrrhotite). Pyrrhotite passivation could possibly provide a means of rendering the tailings non-reactive and thus mitigate acid rock drainage (ARD) formation. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [31] Differential flotation of chalcopyrite, pentlandite and pyrrhotite in Ni-Cu sulphide ores
    Kelebek, S
    Wells, PF
    Fekete, SO
    CANADIAN METALLURGICAL QUARTERLY, 1996, 35 (04) : 329 - 336
  • [32] New type gold mineralization in pyrrhotite stratiform ores of Eastern Sayan (Russia)
    Mironov, AG
    Bakhtina, OT
    Zhmodik, SM
    Kulikov, AA
    Ochirov, YC
    Kulikova, OA
    DOKLADY AKADEMII NAUK, 1999, 365 (06) : 798 - 801
  • [33] REVIEW ON METHODS OF TREATING NICKEL-BEARING PYRRHOTITE - WITH SPECIAL REFERENCE TO SUDBURY AREA PYRRHOTITE
    TOGURI, JM
    CANADIAN METALLURGICAL QUARTERLY, 1975, 14 (04) : 323 - 338
  • [34] OXIDATION AND PASSIVATION OF SULFIDE ORES IN GOLD AND MOLYBDENUM HYDROMETALLURGY
    Rasulova, Sitorabonu
    Guro, Vitaliy
    Ibragimova, Matluba
    Safarov, Edgorjon
    27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2018), 2018, : 1442 - 1447
  • [36] PYRITE-PYRRHOTITE GEOTHERMOMETER - DISTRIBUTION OF NICKEL AND COBALT
    BEZMEN, NI
    TIKHOMIROVA, VI
    KOSOGOVA, VP
    GEOKHIMIYA, 1975, (05): : 700 - 714
  • [37] Combustion and passivation of nickel nanoparticles
    Alymov, Michail I.
    Rubtsov, Nikolai M.
    Seplyarskii, Boris S.
    Kochetkov, Roman A.
    Zelensky, Victor A.
    Ankudinov, Alexey B.
    MENDELEEV COMMUNICATIONS, 2017, 27 (06) : 631 - 633
  • [38] Passivation of Nickel in NaOH Solutions
    Abd El Haleem, S. M.
    Abd El Wanees, S.
    PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2018, 54 (05) : 859 - 865
  • [39] Passivation of Nickel in NaOH Solutions
    S. M. Abd El Haleem
    S. Abd El Wanees
    Protection of Metals and Physical Chemistry of Surfaces, 2018, 54 : 859 - 865
  • [40] Nickel Passivation on Cracking Catalysts
    I. I. Shakirov
    S. V. Kardashev
    S. V. Lysenko
    M. P. Boronoev
    A. L. Maximov
    E. A. Karakhanov
    Russian Journal of Applied Chemistry, 2023, 96 : 702 - 709