Characterizing Derivations on Von Neumann Algebras by Local Actions

被引:7
|
作者
Qi, Xiaofei [1 ]
Ji, Jia [1 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
SUBSPACE LATTICE ALGEBRAS; LIE DERIVATIONS; TRIANGULAR ALGEBRAS; ZERO PRODUCTS; RINGS; HOMOMORPHISMS;
D O I
10.1155/2013/407427
中图分类号
学科分类号
摘要
Let M be any von Neumann algebra without central summands of type I-1 and P a core-free projection with the central carrier I. For any scalar xi, it is shown that every additive map L on M satisfies L (Lambda B-xi B Lambda) = L(Lambda)B - xi BL(Lambda) + Lambda L(B) - xi L(B)Lambda whenever AB = P if and only if (1) xi = 1, L = phi + h, where phi is an additive derivation and h is a central valued additive map vanishing on AB - BA with AB = P; ( 2) xi not equal 1, L is a derivation with L (xi A) = xi L(A) for each A is an element of M.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Ring derivations of Murray-von Neumann algebras
    Huang, Jinghao
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 672 : 28 - 52
  • [42] Notes on derivations of Murray-von Neumann algebras
    Ber, Aleksey
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)
  • [43] NONLINEAR *-JORDAN TRIPLE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Zhao, Fangfang
    Li, Chanjing
    MATHEMATICA SLOVACA, 2018, 68 (01) : 163 - 170
  • [44] Nonlinear 2-local Lie n-derivations of von Neumann algebras
    Zhao, Xingpeng
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1457 - 1465
  • [45] Weak*-2-Local Derivations on Semi-finite von Neumann Algebras
    Yang, Bing
    Hou, Chengjun
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (04)
  • [46] Approximately 2-Local Derivations on the Semi-finite von Neumann Algebras
    Zhao X.
    Fang X.
    Yang B.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (09): : 1350 - 1354
  • [47] On local representations of von Neumann algebras
    Pop, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3569 - 3576
  • [48] Local Derivations on Subalgebras of τ-Measurable Operators with Respect to Semi-finite von Neumann Algebras
    Mukhamedov, Farrukh
    Kudaybergenov, Karimbergen
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 1009 - 1017
  • [49] Local Derivations on Subalgebras of τ-Measurable Operators with Respect to Semi-finite von Neumann Algebras
    Farrukh Mukhamedov
    Karimbergen Kudaybergenov
    Mediterranean Journal of Mathematics, 2015, 12 : 1009 - 1017
  • [50] 2-Local Lie derivations on semi-finite factor von Neumann algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1679 - 1686