Integrating single-cell transcriptomic data across different conditions, technologies, and species

被引:6967
|
作者
Butler, Andrew [1 ,2 ]
Hoffman, Paul [1 ]
Smibert, Peter [1 ]
Papalexi, Efthymia [1 ,2 ]
Satija, Rahul [1 ,2 ]
机构
[1] New York Genome Ctr, New York, NY 10013 USA
[2] NYU, Ctr Genom & Syst Biol, New York, NY 10003 USA
关键词
RNA-SEQ DATA; GENE-EXPRESSION; STEM; MAP; CLASSIFICATION; IDENTIFICATION; VISUALIZATION; HETEROGENEITY; RESOLUTION; TISSUE;
D O I
10.1038/nbt.4096
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
引用
收藏
页码:411 / +
页数:15
相关论文
共 50 条
  • [41] Integrating single-cell and spatially resolved transcriptomic strategies to survey astrocytes in response to stroke
    Daniele, E.
    Scott, E. Y.
    Dryden, M.
    Casasbuenas, D. Lozano
    Peng, J.
    Wheeler, A.
    Faiz, M.
    GLIA, 2023, 71 : E501 - E501
  • [42] Beaconet: A Reference-Free Method for Integrating Multiple Batches of Single-Cell Transcriptomic Data in Original Molecular Space
    Xu, Han
    Ye, Yusen
    Duan, Ran
    Gao, Yong
    Hu, Yuxuan
    Gao, Lin
    ADVANCED SCIENCE, 2024, 11 (26)
  • [43] Single-cell transcriptomic analysis of endometriosis
    Fonseca, Marcos A. S.
    Haro, Marcela
    Wright, Kelly N.
    Lin, Xianzhi
    Abbasi, Forough
    Sun, Jennifer
    Hernandez, Lourdes
    Orr, Natasha L.
    Hong, Jooyoon
    Choi-Kuaea, Yunhee
    Maluf, Horacio M.
    Balzer, Bonnie L.
    Fishburn, Aaron
    Hickey, Ryan
    Cass, Ilana
    Goodridge, Helen S.
    Truong, Mireille
    Wang, Yemin
    Pisarska, Margareta D.
    Dinh, Huy Q.
    EL-Naggar, Amal
    Huntsman, David G.
    Anglesio, Michael S.
    Goodman, Marc T.
    Medeiros, Fabiola
    Siedhoff, Matthew
    Lawrenson, Kate
    NATURE GENETICS, 2023, 55 (02) : 255 - 267
  • [44] Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets
    Duran, Raquel Cuevas-Diaz
    Wei, Haichao
    Wu, Jiaqian
    BMC GENOMICS, 2024, 25 (01)
  • [45] VPAC: Variational projection for accurate clustering of single-cell transcriptomic data
    Chen, Shengquan
    Hua, Kui
    Cui, Hongfei
    Jiang, Rui
    BMC BIOINFORMATICS, 2019, 20 (Suppl 7)
  • [46] Reconstructing gene regulatory networks in single-cell transcriptomic data analysis
    Hao Dai
    Qi-Qi Jin
    Lin Li
    Luo-Nan Chen
    Zoological Research, 2020, 41 (06) : 599 - 604
  • [47] Combinatorial prediction of marker panels from single-cell transcriptomic data
    Delaney, Conor
    Schnell, Alexandra
    Cammarata, Louis V.
    Yao-Smith, Aaron
    Regev, Aviv
    Kuchroo, Vijay K.
    Singer, Meromit
    MOLECULAR SYSTEMS BIOLOGY, 2019, 15 (10)
  • [48] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):
  • [49] VPAC: Variational projection for accurate clustering of single-cell transcriptomic data
    Shengquan Chen
    Kui Hua
    Hongfei Cui
    Rui Jiang
    BMC Bioinformatics, 20
  • [50] Single-cell transcriptomic analysis of endometriosis
    Marcos A. S. Fonseca
    Marcela Haro
    Kelly N. Wright
    Xianzhi Lin
    Forough Abbasi
    Jennifer Sun
    Lourdes Hernandez
    Natasha L. Orr
    Jooyoon Hong
    Yunhee Choi-Kuaea
    Horacio M. Maluf
    Bonnie L. Balzer
    Aaron Fishburn
    Ryan Hickey
    Ilana Cass
    Helen S. Goodridge
    Mireille Truong
    Yemin Wang
    Margareta D. Pisarska
    Huy Q. Dinh
    Amal EL-Naggar
    David G. Huntsman
    Michael S. Anglesio
    Marc T. Goodman
    Fabiola Medeiros
    Matthew Siedhoff
    Kate Lawrenson
    Nature Genetics, 2023, 55 : 255 - 267