The Homogeneous Geometries of Real Hyperbolic Space

被引:4
|
作者
Castrillon Lopez, Marco [1 ]
Martinez Gadea, Pedro [2 ]
Swann, Andrew [3 ,4 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Geometria & Topol, ICMAT CSIC UAM UCM UC3M, E-28040 Madrid, Spain
[2] CSIC, Inst Fis Fundamental, E-28006 Madrid, Spain
[3] Aarhus Univ, Dept Math, DK-8000 Aarhus C, Denmark
[4] Univ So Denmark, Ctr Excellence Particle Phys Phenomenol, Origins CP3, DK-5230 Odense M, Denmark
关键词
Real hyperbolic space; homogeneous structure; holonomy;
D O I
10.1007/s00009-012-0209-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components.
引用
收藏
页码:1011 / 1022
页数:12
相关论文
共 50 条