Ozone treatment on the dispersion of carbon nanotubes in ultra-high performance concrete

被引:27
|
作者
Jung, Myungjun [1 ]
Hong, Sung-gul [1 ,2 ]
Moon, Juhyuk [2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Architecture & Architectural Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Construct & Environm Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Dept Civil & Environm Engn, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Carbon nanotubes; Dispersion; Nucleation; Ozone treatment; Ultra-high performance concrete; CEMENTITIOUS COMPOSITES; SUPERPLASTICIZER; PLASMA; CNT; FUNCTIONALIZATION; SONICATION; STABILITY; STRENGTH; MATRIX; DAMAGE;
D O I
10.1016/j.matdes.2020.108813
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study aimed at investigating the effects of ozone treatment on the dispersion of carbon nanotubes (CNTs) in aqueous solution and the resulting influence on the material properties of ultra-high performance concrete (UHPC). The CNT suspension was fabricated by the ozone treatment and used to produce UHPC/CNT composites. Using spatially-resolved small angle X-ray scattering, the degree of dispersion of CNTs in UHPC matrix was quantitatively evaluated. It was confirmed that the ozone treatment enhanced the dispersion of CNTs in aqueous solution by formulating oxygenic and carboxylic groups on the surfaces of CNTs. Thus, interfacial interaction between the CNTs and UHPC was enhanced, leading to the higher nucleation effect at early ages. Ozone treatment did not significantly modify the hydration mechanism of UHPC. Instead, it provided multiple nucleation sites and double steric repulsion thorough the improved degree of dispersion of CNTs, which resulted in accelerated hydration at early ages and improved compressive strength at later ages. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Development of ultra-high performance concrete with high fire resistance
    Liang, Xiangwei
    Wu, Chengqing
    Su, Yu
    Chen, Zhu
    Li, Zhongxian
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 179 : 400 - 412
  • [42] Ultra-High Performance Concrete - Technology for Present and Future
    Voo, Yen Lei
    Foster, Stephen
    Pek, Lian Guan
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : XXV - XLII
  • [43] Shrinkage Properties of Ultra-High Performance Concrete (UHPC)
    Koh, Kyungtaek
    Ryu, Gumsung
    Kang, Sutae
    Park, Jungjun
    Kim, Sungwook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 948 - 952
  • [44] An Evaluation on the Restrained Shrinkage of Ultra-High Performance Concrete
    Park, Jung-Jun
    Yoo, Doo-Yeol
    Kim, Sung-Wook
    Yoon, Young-Soo
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS XI, 2013, 525-526 : 449 - +
  • [45] Preparation and properties of ultra-high performance lightweight concrete
    Pan, Huimin
    Yan, Shuaijun
    Zhao, Qingxin
    Wang, Dongli
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 310 - 323
  • [46] Microstructural investigations on the skinning of ultra-high performance concrete
    Wetzel, Alexander
    Glotzbach, Christoph
    Maryamh, Kasem
    Middendorf, Bernhard
    CEMENT & CONCRETE COMPOSITES, 2015, 57 : 27 - 33
  • [47] Numerical Assessment of Ultra-high Performance Concrete Material
    Yin, Hor
    Shirai, Kazutaka
    Teo, Wee
    5TH ASIA CONFERENCE ON MECHANICAL AND MATERIALS ENGINEERING (ACMME 2017), 2017, 241
  • [48] Material efficiency in the design of ultra-high performance concrete
    Wille, Kay
    Boisvert-Cotulio, Christopher
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 86 : 33 - 43
  • [49] Design of sustainable ultra-high performance concrete: A review
    Wang, Xinpeng
    Wu, Di
    Zhang, Jinrui
    Yu, Rui
    Hou, Dongshuai
    Shui, Zhonghe
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 307
  • [50] Application of nanomaterials in ultra-high performance concrete: A review
    Liu, Changjiang
    He, Xin
    Deng, Xiaowei
    Wu, Yuyou
    Zheng, Zhoulian
    Liu, Jian
    Hui, David
    NANOTECHNOLOGY REVIEWS, 2020, 9 (01) : 1427 - 1444