The European Vulnerable Option Pricing Based on Jump-Diffusion Process in Fractional Market

被引:0
|
作者
Wang, Chao [1 ]
He, Jianmin [1 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 211189, Jiangsu, Peoples R China
关键词
Fractional market; Jump-diffusion process; Measure transformation; Vulnerable option; CREDIT RISK; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Assuming that the underlying asset is driven by a fractional Brownian motion with jumps, the interest rate and the default intensity are both following the Vasicek model, we derive the European vulnerable option pricing in fractional market. Then the martingale method and measure transformation are used to deduce the solution of it. On the other hand, the expression of jump process in the form of measure transformation is proved in this paper which can be regarded as a supplement of the Girsanov's theorem. The results are tested through numerical experiments which show that the pricing model proposed in this paper can describe the changes of the financial asset well, it makes the pricing more accords with the realistic than Black-Scholes option pricing model.
引用
收藏
页码:568 / 573
页数:6
相关论文
共 50 条
  • [21] European vulnerable options pricing under sub-mixed fractional jump-diffusion model with stochastic interest rate
    Guo, Jingjun
    Wang, Yubing
    Kang, Weiyi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [22] European option pricing under stochastic volatility jump-diffusion models with transaction cost
    Tian, Yingxu
    Zhang, Haoyan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2722 - 2741
  • [23] Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility
    Chang, Ying
    Wang, Yiming
    Zhang, Sumei
    MATHEMATICS, 2021, 9 (02) : 1 - 10
  • [24] Finite volume methods for pricing jump-diffusion option model
    Gan X.
    Yin J.
    Li R.
    Tongji Daxue Xuebao/Journal of Tongji University, 2016, 44 (09): : 1458 - 1465
  • [25] Option Pricing Model with Transaction Cost in the Jump-Diffusion Environment
    Zhang Yuansi
    CONTEMPORARY INNOVATION AND DEVELOPMENT IN MANAGEMENT SCIENCE, 2012, : 29 - 34
  • [26] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Ratanov, Nikita
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (03) : 829 - 845
  • [27] Jump-diffusion option pricing with non-IID jumps
    Zou, Lin
    Camara, Antonio
    Li, Weiping
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024,
  • [28] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Nikita Ratanov
    Methodology and Computing in Applied Probability, 2016, 18 : 829 - 845
  • [29] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [30] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344