Classification and identification of mosquito species using artificial neural networks

被引:20
|
作者
Banerjee, Amit Kumar [1 ]
Kiran, K. [2 ]
Murty, U. S. N. [1 ]
Venkateswarlu, Ch. [1 ,2 ]
机构
[1] Indian Inst Chem Technol, Div Biol, Bioinformat Grp, Hyderabad 500007, Andhra Pradesh, India
[2] Indian Inst Chem Technol, Chem Engn Sci Div, Hyderabad 500007, Andhra Pradesh, India
关键词
Artificial neural network; Anopheles; Internal transcribed spacer 2; Mosquitoes; Malaria;
D O I
10.1016/j.compbiolchem.2008.07.020
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An artificial neural network method is presented for classification and identification of Anopheles mosquito species based on the internal transcribed spacer2 (ITS2) data of ribosomal DNA string. The method is implemented in two different multi-layered feed-forward neural network model forms, namely, multi-input single-output neural network (MISONN) and multi-input multi-output neural network (MIMONN). A number of data sequences in varying sizes of different Anopheline malarial vectors and their corresponding species coding are employed to develop the neural network models. The classification efficiency of the network models for untrained data sequences is evaluated in terms of quantitative performance criteria. The results demonstrate the efficiency of the neural network models to extract the genetic information in ITS2 sequences and to adapt to new data. The method of MISONN is found to exhibit superior performance over MIMONN in distinguishing and identification of the mosquito vectors. (C) 2008 Elsevier Ltd. All rights reserved
引用
收藏
页码:442 / 447
页数:6
相关论文
共 50 条
  • [41] Particle identification using artificial neural networks at BESⅢ
    秦纲
    吕军光
    何康林
    边渐鸣
    曹国富
    邓子艳
    何苗
    黄彬
    季晓斌
    李刚
    李海波
    李卫东
    刘春秀
    刘怀民
    马秋梅
    马想
    冒亚军
    毛泽普
    莫晓虎
    邱进发
    孙胜森
    孙永昭
    王纪科
    王亮亮
    文硕频
    伍灵慧
    谢宇广
    尤郑昀
    杨明
    俞国威
    苑长征
    袁野
    臧石磊
    张长春
    张建勇
    张令
    张学尧
    张瑶
    朱永生
    邹佳恒
    中国物理C, 2008, (01) : 1 - 8
  • [42] Particle identification using artificial neural networks at BESIII
    Qin Gang
    Lue Jun-Guang
    He Kang-Lin
    Bian Jian-Ming
    Cao Guo-Fu
    Deng Zi-Yan
    He Miao
    Huang Bin
    Ji Xiao-Bin
    Li Gang
    Li Hai-Bo
    Li Wei-Dong
    Liu Chun-Xiu
    Liu Huai-Min
    Ma Qiu-Mei
    Ma Xiang
    Mao Ya-Jun
    Mao Ze-Pu
    Mo Xiao-Hu
    Qiu Jin-Fa
    Sun Sheng-Sen
    Sun Yong-Zhao
    Wang Ji-Ke
    Wang Liang-Liang
    Wen Shuo-Pin
    Wu Ling-Hui
    Xie Yu-Guang
    You Zheng-Yun
    Yang Ming
    Yu Guo-Wei
    Yuan Chang-Zheng
    Yuan Ye
    Zang Shi-Lei
    Zhang Chang-Chun
    Zhang Jian-Yong
    Zhang Ling
    Zhang Xue-Yao
    Zhang Yao
    Zhu Yong-Sheng
    Zou Jia-Heng
    CHINESE PHYSICS C, 2008, 32 (01) : 1 - 8
  • [43] Tracer model identification using artificial neural networks
    Akin, S
    WATER RESOURCES RESEARCH, 2005, 41 (10) : W10421 - 1
  • [44] Identification of Faults in Microgrid Using Artificial Neural Networks
    Kolla, Sri
    Onwonga, Peter
    PROCEEDINGS OF THE 2020 IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH), 2020, : 115 - 120
  • [45] Identification of induction machines using artificial neural networks
    Martinez, LZ
    Martinez, AZ
    ISIE '97 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-3, 1997, : 1259 - 1264
  • [46] Identification of botanical specimens using artificial neural networks
    Clark, JY
    PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2004, : 87 - 94
  • [47] Thrips (Thysanoptera) identification using artificial neural networks
    Fedor, P.
    Malenovsky, I.
    Vanhara, J.
    Sierka, W.
    Havel, J.
    BULLETIN OF ENTOMOLOGICAL RESEARCH, 2008, 98 (05) : 437 - 447
  • [48] Artificial Neural Networks in the Classification and Identification of Soybean Cultivars by Planting Region
    Galao, Olivio F.
    Borsato, Dionisio
    Pinto, Jurandir P.
    Visentainer, Jesui V.
    Carrao-Panizzi, Mercedes Concordia
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2011, 22 (01) : 142 - 147
  • [49] Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks
    Wenning, Mareike
    Buechl, Nicole R.
    Scherer, Siegfried
    JOURNAL OF BIOPHOTONICS, 2010, 3 (8-9) : 493 - 505
  • [50] Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks
    Senesac, LR
    Dutta, P
    Datskos, PG
    Sepaniak, MJ
    ANALYTICA CHIMICA ACTA, 2006, 558 (1-2) : 94 - 101