Risk-informed sensitivity analysis and optimization of seismic mitigation strategy using Gaussian process surrogate model

被引:26
|
作者
Zhong, Jian [1 ]
Wan, Hua-Ping [2 ]
Yuan, Wancheng [3 ]
He, Min [1 ]
Ren, Wei-Xin [1 ]
机构
[1] Hefei Univ Technol, Dept Civil Engn, Hefei 23009, Anhui, Peoples R China
[2] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
[3] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Optimal design; Sensitivity analysis; Seismic risk; Cable-stayed bridges; Fluid viscous damper; Gaussian process surrogate model; CABLE-STAYED BRIDGES; ISOLATION BEARINGS; INTENSITY MEASURES; DESIGN; RETROFIT; BEHAVIOR; DAMPERS; SYSTEM;
D O I
10.1016/j.soildyn.2020.106284
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This work aims to develop a method to derive the optimal parameters of seismic mitigation devices for achieving the minimum system seismic risk, which is derived by accounting for the correlation between each individual components risk. Gaussian process surrogate model (GPSM) is used to illustrate the functional relationship between seismic risk and the variables of the mitigation devices, and then both sensitivity analysis and parameter optimization are carried out. Specifically, global sensitivity analysis (GSA), which is powerful for assessing the relative importance of parameters of the isolation devices, is achieved through the use of GPSM; the parameter optimization can be efficiently conducted to find the minimum seismic risk. A cable-stayed bridge model is established to demonstrate the application of the proposed GPSM-based method of sensitivity analysis and optimization of seismic isolation devices. The fluid viscous damper (FVD) which provides additional damper and stiffness is selected to illustrate the procedure of the multi-object optimization of seismic isolation devices on cable-stayed bridges. The seismic risk is calculated by integrating probabilistic seismic hazard analysis (PSHA), probabilistic seismic demand analysis (PADA), and probabilistic damage states, incorporating important sources of nonlinearity and uncertainties. Component-level objectives and one system-level object are considered, and the optimal parameters (damping coefficient C-d and exponent alpha) are determined. The results demonstrate that the GPSM-based is effective and efficient for sensitivity analysis and optimization of seismic isolation devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] CONTINUOUS SIMULATION OPTIMIZATION WITH MODEL MISMATCH USING GAUSSIAN PROCESS REGRESSION
    Inanlouganji, Alireza
    Pedrielli, Giulia
    Fainekos, Georgios
    Pokutta, Sebastian
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 2131 - 2142
  • [42] Training a Neural-Network-Based Surrogate Model for Aerodynamic Optimisation Using a Gaussian Process
    Ghazi, Yousef
    Alhazmi, Nahla
    Tezaur, Radek
    Farhat, Charbel
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2022, 36 (07) : 538 - 554
  • [43] RENEWAL PROCESS MODEL FOR USE IN SEISMIC RISK ANALYSIS.
    Kameda, Hiroyuki
    Ozaki, Yoichiro
    Memoirs of the Faculty of Engineering, Kyoto University, 1979, 41 (pt 1): : 11 - 35
  • [44] A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis
    Su, Guoshao
    Peng, Lifeng
    Hu, Lihua
    STRUCTURAL SAFETY, 2017, 68 : 97 - 109
  • [45] Sensitivity analysis and uncertainty quantification of a seismic risk model for road networks
    Allen, Eduardo
    Chamorro, Alondra
    Poulos, Alan
    Castro, Sebastian
    Carlos de la Llera, Juan
    Echaveguren, Tomas
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (04) : 516 - 530
  • [46] A rcGAN-based surrogate model for nonlinear seismic response analysis and optimization of steel frames
    Liu, Jiming
    Duan, Liping
    Jiang, Yuheng
    Zhao, Lvcong
    Zhao, Jincheng
    ENGINEERING STRUCTURES, 2025, 323
  • [47] A Surrogate Model to Predict Stress Intensity Factor of Tubular Joint Based on Bayesian Optimization Gaussian Process Regression
    Leng, Jiancheng
    Zhang, Jiajia
    Zhang, Jinbo
    Chen, Zitong
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2025, 147 (02):
  • [48] Variance Based Sensitivity Analysis of IKr in a Model of the Human Atrial Action Potential Using Gaussian Process Emulators
    Chang, Eugene T. Y.
    Coveney, Sam
    Clayton, Richard H.
    FUNCTIONAL IMAGING AND MODELLING OF THE HEART, 2017, 10263 : 249 - 259
  • [49] Parameter Selection in Finite-Element-Model Updating by Global Sensitivity Analysis Using Gaussian Process Metamodel
    Wan, Hua-Ping
    Ren, Wei-Xin
    JOURNAL OF STRUCTURAL ENGINEERING, 2015, 141 (06)
  • [50] Optimization of Linear Loading Strategy for Fuel Cell Initiation Based on Gaussian Process Regression Model
    Su, Jianbin
    Lin, Shaofang
    Shen, Yuanxing
    Shi, Lei
    Qiu, Chenxi
    ELECTROCHEMISTRY, 2024, 92 (10)