Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity

被引:14
|
作者
Lai, S. K. [1 ]
Chow, K. W. [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
EVOLUTION-EQUATIONS; PERIODIC-WAVES; SYSTEMS; BALANCE;
D O I
10.1088/0031-8949/85/04/045006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Exact solution of the quadratic mixed-parity Helmholtz-Duffing oscillator
    Elias-Zuniga, Alex
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7590 - 7594
  • [2] Exact solutions for the quadratic mixed-parity Helmholtz-Duffing oscillator by bifurcation theory of dynamical systems
    Geng, Yixiang
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 68 - 77
  • [3] Closed-form solutions for the quadratic mixed-parity nonlinear oscillator
    Augusto Beléndez
    Antonio Hernández
    Tarsicio Beléndez
    Enrique Arribas
    Mariela L. Álvarez
    Indian Journal of Physics, 2021, 95 : 1213 - 1224
  • [4] Closed-form solutions for the quadratic mixed-parity nonlinear oscillator
    Belendez, Augusto
    Hernandez, Antonio
    Belendez, Tarsicio
    Arribas, Enrique
    Alvarez, Mariela L.
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (06) : 1213 - 1224
  • [5] ON THE HARMONIC-BALANCE METHOD FOR MIXED-PARITY NONLINEAR OSCILLATORS
    GOTTLIEB, HPW
    JOURNAL OF SOUND AND VIBRATION, 1992, 152 (01) : 189 - 191
  • [6] Mixed-Parity Solutions in a Mean-Field Dynamo Model
    R. Hollerbach
    G.A. Glatzmaier
    Studia Geophysica et Geodaetica, 1998, 42 : 239 - 246
  • [7] Mixed-parity solutions in a mean-field dynamo model
    Hollerbach, R
    Glatzmaier, GA
    STUDIA GEOPHYSICA ET GEODAETICA, 1998, 42 (03) : 239 - 246
  • [8] A Modified Lindstedt-Poincare Method for Strongly Mixed-Parity Nonlinear Oscillators
    Sun, W. P.
    Wu, B. S.
    Lim, C. W.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2007, 2 (02): : 141 - 145
  • [9] Exact solutions to nonlinear equations with quadratic nonlinearity
    Liu, QM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (24): : 5083 - 5088
  • [10] An Exact Solution to the Quadratic Damping Strong Nonlinearity Duffing Oscillator
    Salas, Alvaro H.
    El-Tantawy, S. A.
    Aljahdaly, Noufe H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021