An Exact Solution to the Quadratic Damping Strong Nonlinearity Duffing Oscillator

被引:28
|
作者
Salas, Alvaro H. [1 ,2 ]
El-Tantawy, S. A. [3 ,4 ]
Aljahdaly, Noufe H. [5 ]
机构
[1] Univ Nacl Colombia, Dept Math, Nubia Campus, Manizales, Colombia
[2] Stat FIZMAKO Res Grp, Nubia Campus, Manizales, Colombia
[3] Port Said Univ, Dept Phys, Fac Sci, Port Said 42521, Egypt
[4] Al Baha Univ, Fac Sci & Arts, Dept Phys, Res Ctr Phys RCP, Al Baha, Saudi Arabia
[5] King Abdulaziz Univ, Fac Sci & Arts, Dept Math, Rabigh Campus, Jeddah 21911, Saudi Arabia
关键词
HOMOTOPY; BALANCE; VAN;
D O I
10.1155/2021/8875589
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nonlinear equations of motion such as the Duffing oscillator equation and its family are seldom addressed in intermediate instruction in classical dynamics; this one is problematic because it cannot be solved in terms of elementary functions before. Thus, in this work, the stability analysis of quadratic damping higher-order nonlinearity Duffing oscillator is investigated. Hereinafter, some new analytical solutions to the undamped higher-order nonlinearity Duffing oscillator in the form of Weierstrass elliptic function are obtained. Posteriorly, a novel exact analytical solution to the quadratic damping higher-order nonlinearity Duffing equation under a certain condition (not arbitrary initial conditions) and in the form of Weierstrass elliptic function is derived in detail for the first time. Furthermore, the obtained solutions are camped to the Runge-Kutta fourth-order (RK4) numerical solution.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Exact solution of the quadratic mixed-parity Helmholtz-Duffing oscillator
    Elias-Zuniga, Alex
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7590 - 7594
  • [2] OSCILLATOR WITH STRONG QUADRATIC DAMPING FORCE
    Cveticanin, Livija
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 119 - 130
  • [3] Exact solution of a quadratic nonlinear oscillator
    Hu, H.
    JOURNAL OF SOUND AND VIBRATION, 2006, 295 (1-2) : 450 - 457
  • [4] The Duffing oscillator with damping
    Johannessen, Kim
    EUROPEAN JOURNAL OF PHYSICS, 2015, 36 (06)
  • [5] Exact solution of the cubic-quintic Duffing oscillator
    Elias-Zuniga, Alex
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 2574 - 2579
  • [6] A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity
    Luo, ACJ
    Han, RPS
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1997, 334B (03): : 447 - 459
  • [7] Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity
    A. Beléndez
    F. J. Martínez
    T. Beléndez
    C. Pascual
    M. L. Alvarez
    E. Gimeno
    E. Arribas
    Indian Journal of Physics, 2018, 92 : 495 - 506
  • [8] Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity
    Belendez, A.
    Martinez, F. J.
    Belendez, T.
    Pascual, C.
    Alvarez, M. L.
    Gimeno, E.
    Arribas, E.
    INDIAN JOURNAL OF PHYSICS, 2018, 92 (04) : 495 - 506
  • [9] Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities
    A. Beléndez
    T. Beléndez
    F. J. Martínez
    C. Pascual
    M. L. Alvarez
    E. Arribas
    Nonlinear Dynamics, 2016, 86 : 1687 - 1700
  • [10] Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities
    Belendez, A.
    Belendez, T.
    Martinez, F. J.
    Pascual, C.
    Alvarez, M. L.
    Arribas, E.
    NONLINEAR DYNAMICS, 2016, 86 (03) : 1687 - 1700