Super-Brownian limits of voter model clusters

被引:1
|
作者
Bramson, M [1 ]
Cox, JT
Le Gall, JF
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Ecole Normale Super, Math Lab, Paris 05, France
来源
ANNALS OF PROBABILITY | 2001年 / 29卷 / 03期
关键词
voter model; super-Brownian motion; coalescing random walk;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The voter model is one of the standard interacting particle systems. Two related problems for this process are to analyze its behavior, after large times t, for the sets of sites (1) sharing the same opinion as the site 0, and (2) having the opinion that was originally at 0. Results on the sizes of these sets were given by Sawyer (1979) and Bramson and Griffeath (1980). Here, we investigate the spatial structure of these sets in d greater than or equal to 2, which we show converge to quantities associated with super-Brownian motion, after suitable normalization. The main theorem from Cox, Durrett and Perkins (2000) serves as an important tool for these results.
引用
收藏
页码:1001 / 1032
页数:32
相关论文
共 50 条
  • [31] Lattice trees and super-Brownian motion
    Derbez, E
    Slade, G
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 19 - 38
  • [32] The dimension of the boundary of super-Brownian motion
    Mytnik, Leonid
    Perkins, Edwin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 821 - 885
  • [33] The multifractal structure of super-Brownian motion
    Perkins, EA
    Taylor, SJ
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (01): : 97 - 138
  • [34] The average density of super-Brownian motion
    Mörters, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (01): : 71 - 100
  • [35] On the martingale problem for super-Brownian motion
    Bass, RF
    Perkins, EA
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 195 - 201
  • [36] The biodiversity of catalytic super-Brownian motion
    Fleischmann, K
    Klenke, A
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04): : 1121 - 1136
  • [37] Thick points of super-Brownian motion
    Jochen Blath
    Peter Mörters
    Probability Theory and Related Fields, 2005, 131 : 604 - 630
  • [38] Wiener's test for super-Brownian motion and the Brownian snake
    Dhersin, JS
    LeGall, JF
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (01) : 103 - 129
  • [39] Wiener’s test for super-Brownian motion and the Brownian snake
    Jean-Stéphane Dhersin
    Jean-François Le Gall
    Probability Theory and Related Fields, 1997, 108 : 103 - 129
  • [40] The Behavior of Super-Brownian Motion near Extinction
    Guo Junyi
    Wu Rong Department of Mathematics
    Acta Mathematica Sinica,English Series, 1998, (03) : 315 - 320