Modeling two-phase flow in a micro-model with local thermal non-equilibrium on the Darcy scale

被引:4
|
作者
Nuske, Philipp [1 ]
Ronneberger, Olaf [2 ,3 ]
Karadimitriou, Nikolaos K. [5 ]
Helmig, Rainer [1 ]
Hassanizadeh, S. Majid [4 ]
机构
[1] Univ Stuttgart, Dept Hydromech & Modelling Hydrosyst, Stuttgart, Germany
[2] Univ Freiburg, Dept Comp Sci, Image Anal Lab, Freiburg, Germany
[3] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, Freiburg, Germany
[4] Univ Utrecht, Dept Earth Sci, NL-3508 TC Utrecht, Netherlands
[5] Univ Manchester, Fac Engn & Phys Sci, Sch Chem Engn & Analyt Sci, Manchester, Lancs, England
关键词
Two-phase flow in porous media; Local thermal non-equilibrium; Image analysis; Determination of constitutive relations; Local equilibrium assumptions; Model calibration; Macro-scale non-equilibrium; HYDRAULIC CONDUCTIVITY; POROUS-MEDIA;
D O I
10.1016/j.ijheatmasstransfer.2015.04.057
中图分类号
O414.1 [热力学];
学科分类号
摘要
Loosening local equilibrium assumptions in two-phase flow in porous media gives rise to new, unknown variables. More specifically, when loosening the local thermal equilibrium assumption, one has to describe the heat transfer between multiple phases, present at the same mathematical point. In this paper, we calibrate a macro-scale mathematical model which is free of local equilibrium assumptions to experimental observations. We emphasize the correct determination and upscaling of necessary input parameters from the experimental data achieved by image analysis. By choosing an appropriate scaling parameter, we are able to reproduce experimental measurements satisfactorily. This is a first step towards quantifying heat transfer in two-phase flow in porous media. Ultimately, our aim is to find the limits of the applicability of local equilibrium assumptions in two-phase flow in porous media. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:822 / 835
页数:14
相关论文
共 50 条
  • [31] A unified non-equilibrium phase change model for injection flow modeling
    Guo, Hengjie
    Torelli, Roberto
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 208
  • [32] Analysis and computation of non-equilibrium two-phase flows
    Guha, A
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1997, 22 (3): : 295 - 321
  • [33] Analysis and computation of non-equilibrium two-phase flows
    Abhijit Guha
    Sadhana, 1997, 22 : 295 - 321
  • [34] Instabilities and bifurcation of non-equilibrium two-phase flows
    Adam, S
    Schnerr, GH
    JOURNAL OF FLUID MECHANICS, 1997, 348 : 1 - 28
  • [35] Unsteady states in non-equilibrium two-phase seepage
    Bulgakova, GT
    Kalyakin, AN
    Khasanov, MM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2000, 64 (02): : 283 - 288
  • [36] Solving a mixture model of two-phase flow with velocity non-equilibrium using WENO wavelet methods
    Kozakevicius, Alice de Jesus
    Zeidan, Dia
    Schmidt, Alex A.
    Jakobsson, Stefan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (09) : 2052 - 2071
  • [37] Instabilities and bifurcation of non-equilibrium two-phase flows
    Adam, Stephan
    Schnerr, Guenter H.
    Journal of Fluid Mechanics, 1997, 348 : 1 - 28
  • [38] Ferromagnetic Convection in a Heterogeneous Darcy Porous Medium Using a Local Thermal Non-equilibrium (LTNE) Model
    I. S. Shivakumara
    Chiu-On Ng
    M. Ravisha
    Transport in Porous Media, 2011, 90 : 529 - 544
  • [39] On the Barenblatt model for non-equilibrium two phase flow in porous media
    Natalini, R
    Tesei, A
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) : 349 - 367
  • [40] Numerical modeling of two-phase high speed jet with non-equilibrium solid phase crystallization
    Molchanov, A. M.
    Yanyshev, D. S.
    Bykov, L. V.
    11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158