The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China

被引:199
|
作者
Cuo, Lan [1 ]
Zhang, Yongxin [2 ]
Gao, Yanhong [3 ]
Hao, Zhenchun [4 ]
Cairang, Luosang [5 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Laboratoy Tibetan Environm Changes & Land Sur, Beijing, Peoples R China
[2] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA
[3] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Gansu, Peoples R China
[4] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China
[5] Qinghai Agr & Forestry Adm, Xining, Qinghai Provinc, Peoples R China
关键词
Hydrological processes; Hydrological modeling; Climate change and land cover change/use impacts; The upper Yellow River Basin; REGIONAL-SCALE HYDROLOGY; LONG-TERM TREND; SOIL-MOISTURE; TIBETAN PLATEAU; VIC-2L MODEL; WATER-RESOURCES; SNOWMELT RUNOFF; SURFACE MODEL; FROZEN SOIL; LAST HALF;
D O I
10.1016/j.jhydrol.2013.08.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Observed streamflow over the past decades in the upper Yellow River Basin (UYRB) was examined for changes in hydrological regime. The modified Variable Infiltration Capacity (VIC) model was employed to better understand climate change impact and long-term and recent land cover/use change impact as it relates to the "Grain for Green Project" and "Three Rivers Source Region Reserve" on water resources by examining mechanisms behind observed streamflow changes. UYRB hydrological regimes have undergone changes over the past decades as reflected by a decrease in wet and warm season streamflow, and annual streamflow. Progressively more streamflow has been generated in the early part of the year compared to the latter part, consequently leading to the earlier occurrence of the day representing the midpoint of yearly mass flow. VIC simulations suggest that these changes in observed streamflow were due to the combined effects of changes in precipitation, evapotranspiration, rainfall runoff, and baseflow and were caused primarily by climate change above Tang Nai Hai (TNH) hydrometric station. Below TNH where human activity is relative intense, land cover/ use change and reservoir release impacts became important. Changes in snowmelt runoff were negligible over the past decades. Owing to this, snowmelt runoff appeared to play only a modest role in the changing hydrology of the region. The conservation programs were shown to start to exhibit some positive impacts on water resources in the UYRB. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [21] REGIONAL CLIMATE RESPONSES TO THE LAND USE AND LAND COVER CHANGE IN HEIHE RIVER BASIN, CHINA
    Chen, Liang
    Zhao, Chuanyan
    Feng, Zhaodong
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 875 - 878
  • [22] Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin
    Pervez, Md Shahriar
    Henebry, Geoffrey M.
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2015, 3 : 285 - 311
  • [23] Effects of Land Use and Land Cover Change on Temperature in Summer over the Yellow River Basin, China
    Ru, Xutong
    Song, Hongquan
    Xia, Haoming
    Zhai, Shiyan
    Wang, Yaobin
    Min, Ruiqi
    Zhang, Haopeng
    Qiao, Longxin
    REMOTE SENSING, 2022, 14 (17)
  • [24] Quantifying the impacts of climate change and land use/cover change on runoff in the lower Connecticut River Basin
    Wang, Hui
    Stephenson, Scott R.
    HYDROLOGICAL PROCESSES, 2018, 32 (09) : 1301 - 1312
  • [25] Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia
    Setyorini A.
    Khare D.
    Pingale S.M.
    Applied Geomatics, 2017, 9 (3) : 191 - 204
  • [26] Potential impacts of land use and land cover change (LUCC) and climate change on evapotranspiration and gross primary productivity in the Haihe River Basin, China
    Sun, Shaobo
    Chen, Baozhang
    Yan, Jianwu
    Van Zwieten, Lukas
    Wang, Hailong
    Dong, Jianzhi
    Fu, Pingqing
    Song, Zhaoliang
    JOURNAL OF CLEANER PRODUCTION, 2024, 476
  • [27] The effects of rainfall characteristics and land use and cover change on runoff in the Yellow River basin, China
    Hu, CaiHong
    Ran, Guang
    Li, Gang
    Yu, Yun
    Wu, Qiang
    Yan, Denghua
    Jian, Shengqi
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2021, 69 (01) : 29 - 40
  • [28] Climate Change Impacts on the Hydrology of the Brahmaputra River Basin
    Palash, Wahid
    Bajracharya, Sagar Ratna
    Shrestha, Arun Bhakta
    Wahid, Shahriar
    Hossain, Md. Shahadat
    Mogumder, Tarun Kanti
    Mazumder, Liton Chandra
    CLIMATE, 2023, 11 (01)
  • [29] Impacts of Land-Use Change on the Hydrology of Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia
    Getachew, Birhan
    Manjunatha, Busnur Rachotappa
    GLOBAL CHALLENGES, 2022, 6 (08)
  • [30] Impacts of climate change/variability on the streamflow in the Yellow River Basin, China
    Liu, Qiang
    Cui, Baoshan
    ECOLOGICAL MODELLING, 2011, 222 (02) : 268 - 274