Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae

被引:18
|
作者
Kaizer, Hannah [1 ]
Connelly, Carla J. [1 ]
Bettridge, Kelsey [1 ]
Viggiani, Christopher [1 ]
Greider, Carol W. [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
telomeres; telomerase; Rif2; length regulation; TERT PROMOTER MUTATIONS; DNA-BINDING PROTEIN; HUMAN-CELLS; YEAST; END; MAINTENANCE; ASSOCIATION; ELONGATION; SENESCENCE; STRAINS;
D O I
10.1534/genetics.115.177899
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2 mutants but also in rif1 and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2 mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation.
引用
收藏
页码:573 / +
页数:34
相关论文
共 50 条
  • [11] TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae
    Runge, KW
    Zakian, VA
    MOLECULAR AND CELLULAR BIOLOGY, 1996, 16 (06) : 3094 - 3105
  • [12] Biotin protein ligase from Saccharomyces cerevisiae -: The N-terminal domain is required for complete activity
    Polyak, SW
    Chapman-Smith, A
    Brautigan, PJ
    Wallace, JC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) : 32847 - 32854
  • [13] Regulation of the AE2 anion exchanger by pHi and pHo requires highly conserved amino acids in the AE2 cytoplasmic N-terminal domain
    Stewart, AK
    Chernova, MN
    Shmukler, BE
    Wilhelm, S
    Alper, SL
    JOURNAL OF PHYSIOLOGY-LONDON, 2002, 544 : 106P - 106P
  • [14] Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae
    Polevoda, B
    Norbeck, J
    Takakura, H
    Blomberg, A
    Sherman, F
    EMBO JOURNAL, 1999, 18 (21): : 6155 - 6168
  • [15] N-terminal methionine removal and methionine metabolism in Saccharomyces cerevisiae
    Dummitt, B
    Micka, WS
    Chang, YH
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 89 (05) : 964 - 974
  • [16] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9
    Evans, SP
    Bycroft, M
    JOURNAL OF MOLECULAR BIOLOGY, 1999, 291 (03) : 661 - 669
  • [17] Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae
    Craven, RJ
    Petes, TD
    GENETICS, 1999, 152 (04) : 1531 - 1541
  • [18] The Biochemical Activities of the Saccharomyces cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain
    Nickens, David G.
    Sausen, Christopher W.
    Bochman, Matthew L.
    GENES, 2019, 10 (06):
  • [19] A new Hansenula polymorpha HAP4 homologue which contains only the N-terminal conserved domain of the protein is fully functional in Saccharomyces cerevisiae
    Sybirna, K
    Guiard, B
    Li, YF
    Bao, WG
    Bolotin-Fukuhara, M
    Delahodde, A
    CURRENT GENETICS, 2005, 47 (03) : 172 - 181
  • [20] A new Hansenula polymorpha HAP4 homologue which contains only the N-terminal conserved domain of the protein is fully functional in Saccharomyces cerevisiae
    K. Sybirna
    B. Guiard
    Y.F. Li
    W.G. Bao
    M. Bolotin-Fukuhara
    A. Delahodde
    Current Genetics, 2005, 47 : 172 - 181