ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 < p(x) < 1

被引:0
|
作者
Bandaliev, R. A. [1 ,2 ]
Hasanov, S. G. [1 ,3 ]
机构
[1] ANAS, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Gandja State Univ, Gandja, Azerbaijan
关键词
L-p(x) spaces; denseness; potential type identity approximations; modular inequality; compactness; SPACES; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove the denseness of C-0(infinity)(Omega) in L-p(x) (Omega)for 0 < p(x) < 1. We construct a family of potential type identity approximations and prove a modular inequality in L-p(x) (Omega)for 0 < p(x) < 1. As an application we prove an analogue of the Kolmogorov Riesz type compactness theorem in L-p(x)(Omega) for 0 < p(x) < 1.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)
  • [32] Unconditionality of general Franklin systems in Lp[0,1], 1 &lt; p &lt; ∞
    Gevorkyan, GG
    Kamont, A
    STUDIA MATHEMATICA, 2004, 164 (02) : 161 - 204
  • [33] Actions of S on C0(X) and ideals of C0(X) xα S
    Shourijeh, B. Tabatabaie
    Zebarjad, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 199 - 203
  • [34] Approximation of Fourier series in terms of functions in Lp Spaces for 0 &lt; p &lt; 1
    Aboud, Sahab Mohsen
    Bhaya, Eman Samir
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 897 - 911
  • [35] Continuity of the solution to the even Lp Minkowski problem for 0 &lt; p &lt; 1 in the plane
    Wang, Hejun
    Lv, Yusha
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (12)
  • [36] lp-Regularized Least Squares (0 &lt; p &lt; 1) and Critical Path
    Yukawa, Masahiro
    Amari, Shun-Ichi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 488 - 502
  • [37] The Orlicz version of the Lp Minkowski problem for -n &lt; p &lt; 0
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [38] Lp - Bounds for the Krein Spectral Shift Function: 0 &lt; p &lt; ∞
    Pliev, M.
    Sukochev, F.
    Zanin, D.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (04) : 491 - 499
  • [39] Uniqueness of the unconditional basis of l1 (lp) and lp(l1), 0 &lt; p &lt; 1
    Albiac, F
    Kalton, N
    Leránoz, C
    POSITIVITY, 2004, 8 (04) : 443 - 454
  • [40] The Lp Minkowski Problem for Polytopes for p &lt; 0
    Zhu, Guangxian
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (04) : 1333 - 1350