Dimensionality Reduction with Category Information Fusion and Non-negative Matrix Factorization for Text Categorization

被引:0
|
作者
Zheng, Wenbin [1 ,2 ]
Qian, Yuntao [1 ]
Tang, Hong [3 ,4 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310003, Zhejiang, Peoples R China
[2] China Jiliang Univ, Coll Informat Engn, Hangzhou 310003, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Aeronaut & Astronaut, Hangzhou 310003, Zhejiang, Peoples R China
[4] China Jiliang Univ, Coll Metrol Technol & Engn, Hangzhou, Peoples R China
关键词
Text Categorization; Dimensionality reduction; Non-negative Matrix Factorization; Category Fusion; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimensionality reduction can efficiently improve computing performance of classifiers in text categorization, and non-negative matrix factorization could map the high dimensional term space into a low dimensional semantic subspace easily. Meanwhile, the non-negative of the basis vectors could provide a meaningful explanation for the semantic subspace. However, it usually could not achieve a satisfied classification performance because it is sensitive to the noise, data missing and outlier as a linear reconstruction method. This paper proposes a novel approach in which the train text and its category information are fused and a transformation matrix that maps the term space into a semantic subspace is obtained by a basis orthogonality non-negative matrix factorization and truncation. Finally, the dimensionality can be reduced aggressively with these transformations. Experimental results show that the proposed approach remains a good classification performance in a very low dimensional case.
引用
收藏
页码:505 / +
页数:2
相关论文
共 50 条
  • [41] FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
    Babaee, Mohammadreza
    Bahmanyar, Reza
    Rigoll, Gerhard
    Datcu, Mihai
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3023 - 3027
  • [42] Multiobjective Sparse Non-Negative Matrix Factorization
    Gong, Maoguo
    Jiang, Xiangming
    Li, Hao
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (08) : 2941 - 2954
  • [43] Optimization and expansion of non-negative matrix factorization
    Xihui Lin
    Paul C. Boutros
    BMC Bioinformatics, 21
  • [44] Novel Algorithm for Non-Negative Matrix Factorization
    Tran Dang Hien
    Do Van Tuan
    Pham Van At
    Le Hung Son
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2015, 11 (02) : 121 - 133
  • [45] Discriminant Projective Non-Negative Matrix Factorization
    Guan, Naiyang
    Zhang, Xiang
    Luo, Zhigang
    Tao, Dacheng
    Yang, Xuejun
    PLOS ONE, 2013, 8 (12):
  • [46] Enforced Sparse Non-Negative Matrix Factorization
    Gavin, Brendan
    Gadepally, Vijay
    Kepner, Jeremy
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 902 - 911
  • [47] Swarm Intelligence for Non-Negative Matrix Factorization
    Janecek, Andreas
    Tan, Ying
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2011, 2 (04) : 12 - 34
  • [48] Optimization and expansion of non-negative matrix factorization
    Lin, Xihui
    Boutros, Paul C.
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [49] Non-negative matrix factorization for face recognition
    Guillamet, D
    Vitriá, J
    TOPICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2504 : 336 - 344
  • [50] Image Fusion Based on Non-negative Matrix Factorization and Infrared Feature Extraction
    Mou, Jiao
    Gao, Wei
    Song, Zongxi
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 1046 - 1050