On manifolds supporting quasi-Anosov diffeomorphisms

被引:0
|
作者
Hertz, JR [1 ]
Ures, R [1 ]
Vieitez, JL [1 ]
机构
[1] Univ Republica, Fac Ingn, IMERL, Montevideo, Uruguay
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional manifold supporting a quasi-Anosov diffeomorphism. If n = 3 then either M = T-3, in which case the diffeomorphisms is Anosov. or else its fundamental group contains a copy of Z(6). If n = 4 then Pi(1) (M) contains a copy of Z(4). provided that the diffeomorphism is not Anosov. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:321 / 323
页数:3
相关论文
共 50 条
  • [21] ANOSOV DIFFEOMORPHISMS ON TORI
    FRANKS, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 : 117 - &
  • [22] The space of Anosov diffeomorphisms
    Farrell, F. Thomas
    Gogolev, Andrey
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 383 - 396
  • [23] Examples of Anosov diffeomorphisms
    Lauret, J
    JOURNAL OF ALGEBRA, 2003, 262 (01) : 201 - 209
  • [24] Diffeomorphisms holomorphic Anosov
    Cantat, S
    COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (04) : 779 - 797
  • [25] ANOSOV DIFFEOMORPHISMS ON PLANE
    MENDES, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (02) : 231 - 235
  • [26] Anosov and Circle Diffeomorphisms
    Almeida, Joao P.
    Fisher, Albert M.
    Pinto, Alberto A.
    Rand, David A.
    DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 11 - 23
  • [27] CHARACTERIZATION OF ANOSOV DIFFEOMORPHISMS
    MATHER, JN
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (05): : 479 - &
  • [28] Anosov Diffeomorphisms and -Tilings
    Almeida, Joao P.
    Pinto, Alberto A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (02) : 435 - 456
  • [29] Anosov diffeomorphisms and coupling
    Bressaud, X
    Liverani, C
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 129 - 152
  • [30] NOTE ON ANOSOV DIFFEOMORPHISMS
    SACKER, RJ
    SELL, GR
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (02) : 278 - 280