Can bi-cubic surfaces be class A?

被引:13
|
作者
Karciauskas, Kestutis [1 ]
Peters, Joerg [2 ]
机构
[1] Vilnius State Univ, Vilnius, Lithuania
[2] Univ Florida, Gainesville, FL 32611 USA
关键词
D O I
10.1111/cgf.12711
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
'Class A surface' is a term in the automotive design industry, describing spline surfaces with aesthetic, non-oscillating highlight lines. Tensor-product B-splines of degree bi-3 (bicubic) are routinely used to generate smooth design surfaces and are often the de facto standard for downstream processing. To bridge the gap, this paper explores and gives a concrete suggestion, how to achieve good highlight line distributions for irregular bi-3 tensor-product patch layout by allowing, along some seams, a slight mismatch of normals below the industry-accepted tolerance of one tenth of a degree. Near the irregularities, the solution can be viewed as transforming a higher-degree, high-quality formally smooth surface into a bi-3 spline surface with few pieces, sacrificing formal smoothness but qualitatively retaining the shape.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [21] Bi-cubic interpolation for shift-free pan-sharpening
    Aiazzi, Bruno
    Baronti, Stefano
    Selva, Massimo
    Alparone, Luciano
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 86 : 65 - 76
  • [22] Convex data modelling using rational bi-cubic spline function
    Abbas, Muhammad
    Abd Majid, Ahmad
    Awang, Mohd Nain Hj
    Ali, Jamaludin Md
    SCIENCEASIA, 2014, 40 : 31 - 39
  • [23] On the class of cubic surfaces
    Basset, AB
    NATURE, 1905, 72 : 484 - 484
  • [24] The efficient VLSI design of BI-CUBIC convolution interpolation for digital image processing
    Lin, Chung-chi
    Sheu, Ming-hwa
    Chiang, Huann-keng
    Liaw, Chishyan
    Wu, Zeng-chuan
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 480 - +
  • [25] Rational bi-cubic G2 splines for design with basic shapes
    Karciauskas, Kestutis
    Peters, Joerg
    COMPUTER GRAPHICS FORUM, 2011, 30 (05) : 1389 - 1395
  • [26] On G1 stitched bi-cubic Bezier patches with arbitrary topology
    Peters, Jorg
    COMPUTERS & GRAPHICS-UK, 2018, 71 : 154 - 156
  • [27] Bi-cubic spline functions in BEM computations of electrostatic HV-fields
    Vetter, C
    BOUNDARY ELEMENTS XXII, 2000, 8 : 429 - 438
  • [28] A method to approximate a spatial surface using A Bézier Bi-Cubic surface
    Driscu, Mariana
    Leather and Footwear Journal, 2010, 10 (02): : 19 - 32
  • [29] Numerical subgrid Bi-cubic methods of partial differential equations in image segmentation
    Kim, Dongyung
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [30] Shape preserving surface data visualization using rational bi-cubic functions
    Hussain, M. Z.
    Bashir, S.
    JOURNAL OF NUMERICAL MATHEMATICS, 2011, 19 (04) : 267 - 307