Can bi-cubic surfaces be class A?

被引:13
|
作者
Karciauskas, Kestutis [1 ]
Peters, Joerg [2 ]
机构
[1] Vilnius State Univ, Vilnius, Lithuania
[2] Univ Florida, Gainesville, FL 32611 USA
关键词
D O I
10.1111/cgf.12711
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
'Class A surface' is a term in the automotive design industry, describing spline surfaces with aesthetic, non-oscillating highlight lines. Tensor-product B-splines of degree bi-3 (bicubic) are routinely used to generate smooth design surfaces and are often the de facto standard for downstream processing. To bridge the gap, this paper explores and gives a concrete suggestion, how to achieve good highlight line distributions for irregular bi-3 tensor-product patch layout by allowing, along some seams, a slight mismatch of normals below the industry-accepted tolerance of one tenth of a degree. Near the irregularities, the solution can be viewed as transforming a higher-degree, high-quality formally smooth surface into a bi-3 spline surface with few pieces, sacrificing formal smoothness but qualitatively retaining the shape.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [1] Bi-cubic Scaffold Surfaces
    Karciauskas, Kestutis
    Peters, Jorg
    COMPUTER-AIDED DESIGN, 2022, 150
  • [2] Point-augmented bi-cubic subdivision surfaces
    Karciauskas, K.
    Peters, J.
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 13 - 23
  • [3] The Invariant Functions of the Rational Bi-cubic Bezier Surfaces
    Bez, H. E.
    MATHEMATICS OF SURFACES XIII, 2009, 5654 : 55 - 74
  • [4] On bi-Cubic functional equations
    Fazeli, A.
    Sarteshnizi, E. Amini
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (08) : 1413 - 1423
  • [5] Implicitizing bi-cubic toric surfaces by Dixon A-resultant quotients
    Foo, MC
    Chionh, EW
    11TH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS, 2003, : 414 - 418
  • [6] Shape preserving aspects of a novel class of bi-cubic partially blended rational zipper fractal interpolation surfaces
    Vijay
    Chand, A. K. B.
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3475 - 3505
  • [7] Jacobi–PIA algorithm for bi-cubic B-spline interpolation surfaces
    Liu, Chengzhi
    Li, Juncheng
    Hu, Lijuan
    Graphical Models, 2022, 120
  • [8] Jacobi-PIA algorithm for bi-cubic B-spline interpolation surfaces
    Liu, Chengzhi
    Li, Juncheng
    Hu, Lijuan
    GRAPHICAL MODELS, 2022, 120
  • [9] GS-PIA Algorithm for Bi-cubic B-spline Interpolation Surfaces
    Xiang, Yuchen
    Liu, Chengzhi
    IAENG International Journal of Applied Mathematics, 2024, 54 (06) : 1157 - 1162
  • [10] Behavior of Bi-Cubic Functions in Lipschitz Spaces
    Nikoufar I.
    Lobachevskii Journal of Mathematics, 2018, 39 (6) : 803 - 808