Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils

被引:148
|
作者
Zhao, Shicheng [1 ]
Qiu, Shaojun [1 ]
Xu, Xinpeng [1 ]
Ciampitti, Ignacio A. [2 ]
Zhang, Shuiqing [3 ]
He, Ping [1 ]
机构
[1] Chinese Acad Agr Sci, Key Lab Plant Nutr & Fertilizer, Minist Agr, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[2] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA
[3] Henan Acad Agr Sci, Inst Plant Nutr & Environm Resources Sci, Zhengzhou 450002, Henan, Peoples R China
关键词
Long-term fertilization practice; Straw return; Chemical fertilizer; Straw decomposition; Soil microbial community composition; BACTERIAL COMMUNITY; BLACK SOIL; CARBON MINERALIZATION; FUNGAL COMMUNITY; LITTER ADDITION; NITROUS-OXIDE; CROP RESIDUES; DIVERSITY; MICROORGANISMS; FRACTIONS;
D O I
10.1016/j.apsoil.2019.02.018
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Fertilization practices can change soil fertility and biological properties, and influence its ecological functions. We studied the change in the straw decomposition rate and microbial community composition in soils with different long-term fertilization regimes (no-fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizers (NPK); and NPK plus straw (NPKS)) with addition of straw in a 75-day incubation experiment. Carbon dioxide (CO2) emission rates from the straw material were 13.9, 15.8, and 17.9 mu g C g(-1) soil day(-1) in the CK + S, NPK + S, and NPKS + S treatments, respectively. After straw addition, the biomass of fungi and bacteria increase following the order of CK + S <= NPK + S < NPKS + S; while the bacterial richness decreased and did not change with incubation time, the fungal richness decreased and presented different responses among treatments with incubation time. Their diversities presented a decreasing-increasing trend with incubation time in all treatments. The richness and diversity of bacteria and fungi were positively correlated with soil NO3--N. Bacterial community structure on days 1 and 3 were significantly separated from that on day 75; however, fungal community structure did not differ significantly as that of bacteria across different stages in the same treatment. A redundancy analysis showed that straw addition changed the community structure of bacteria and fungi by decreasing soil NO3--N, and their community structures were regulated by soil organic C in the early stage and by NH4+-N in the later incubation stage. The relative abundance of the bacterial phyla Proteobacteria, Firmicutes, and fungal phyla Ascomycota showed synchronized changes with straw CO2 emissions rate. Our findings suggested that long-term fertilization and the return of straw to soils increased straw decomposition relative to the unfertilized soil, the latter difference in decomposition attributed to greater biomass of bacteria and fungi resulting from the improvement in soil fertility.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
  • [21] Responses of Soil Enzyme Activities and Microbial Community Composition to Moisture Regimes in Paddy Soils Under Long-Term Fertilization Practices
    LI Weitao
    WU Meng
    LIU Ming
    JIANG Chunyu
    CHEN Xiaofen
    Yakov KUZYAKOV
    J?rg RINKLEBE
    LI Zhongpei
    Pedosphere, 2018, 28 (02) : 323 - 331
  • [22] RESPONSE OF SOIL MICROBIAL DIVERSITY TO DIFFERENT LONG-TERM FERTILIZATION
    Kracmarova, Martina
    Stiborova, Hana
    Uhlik, Ondrej
    Strejcek, Michal
    Demnerova, Katerina
    BIOBIO 2017: 6TH INTERNATIONAL SYMPOSIUM ON BIOSORPTION AND BIODEGRADATION/BIOREMEDIATION, 2017, : 26 - 29
  • [23] Responses of Soil Enzyme Activities and Microbial Community Composition to Moisture Regimes in Paddy Soils Under Long-Term Fertilization Practices
    Li Weitao
    Wu Meng
    Liu Ming
    Jiang Chunyu
    Chen Xiaofen
    Kuzyakov, Yakov
    Rinklebe, Joerg
    Li Zhongpei
    PEDOSPHERE, 2018, 28 (02) : 323 - 331
  • [24] Microbial biomass and community composition in a Luvisol soil as influenced by long-term land use and fertilization
    Yu, Wan-Tai
    Bi, Ming-Li
    Xu, Yong-Gang
    Zhou, Hua
    Ma, Qiang
    Jiang, Chun-ming
    CATENA, 2013, 107 : 89 - 95
  • [25] Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning
    Hao, Minmin
    Hu, Hengyu
    Liu, Zhen
    Dong, Qingling
    Sun, Kai
    Feng, Yupeng
    Li, Geng
    Ning, Tangyuan
    APPLIED SOIL ECOLOGY, 2019, 136 : 43 - 54
  • [26] Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem
    Wang, Zengru
    Liu, Yubing
    Zhao, Lina
    Zhang, Wenli
    Liu, Lichao
    PEERJ, 2019, 7
  • [27] Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils
    Hongzhao Yuan
    Tida Ge
    Ping Zhou
    Shoulong Liu
    Paula Roberts
    Hanhua Zhu
    Ziying Zou
    Chengli Tong
    Jinshui Wu
    Journal of Soils and Sediments, 2013, 13 : 877 - 886
  • [28] Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils
    Yuan, Hongzhao
    Ge, Tida
    Zhou, Ping
    Liu, Shoulong
    Roberts, Paula
    Zhu, Hanhua
    Zou, Ziying
    Tong, Chengli
    Wu, Jinshui
    JOURNAL OF SOILS AND SEDIMENTS, 2013, 13 (05) : 877 - 886
  • [29] Microbial community assembly and metabolic function during wheat straw decomposition under different nitrogen fertilization treatments
    Yangquanwei Zhong
    Jin Liu
    Xiaoyu Jia
    Zhouping Shangguan
    Ruiwu Wang
    Weiming Yan
    Biology and Fertility of Soils, 2020, 56 : 697 - 710
  • [30] Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe
    Niu, Guoxiang
    Hasi, Muqier
    Wang, Ruzhen
    Wang, Yinliu
    Geng, Qianqian
    Hu, Shuya
    Xu, Xiaohui
    Yang, Junjie
    Wang, Changhui
    Han, Xingguo
    Huang, Jianhui
    APPLIED SOIL ECOLOGY, 2021, 167