Multiaxial creep of low density open-cell foams

被引:13
|
作者
Fan, Z. G. [3 ,4 ]
Chen, C. Q. [1 ,2 ]
Lu, T. J. [3 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, AML, Beijing 100084, Peoples R China
[2] Tsinghua Univ, CNMM, Beijing 100084, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China
[4] CAEP, Inst Struct Mech, Mianyang 621900, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2012年 / 540卷
关键词
Open-cell foam; Voronoi model; Phenomenological constitutive model; Creep; MECHANICAL-PROPERTIES; LARGE DEFORMATIONS; SANDWICH BEAMS; ALUMINUM FOAM; SOLIDS; SIMULATION; METALS;
D O I
10.1016/j.msea.2012.01.086
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Open-cell foams have wide applications in structural components, energy adsorption, heat transfer, sound insulation, and so on. When their in-service temperature is high, time dependent creep may become significant. To investigate the secondary creep of low density foams under multiaxial loading, three-dimensional (3D) finite element (FE) Voronoi models are developed. The effects of relative density, temperature, cell irregularity, and stress state on the uniaxial creep are explored. By taking the mass at strut nodes into account, the creep foam model by Gibson and Ashby (Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, UK, 1997) is modified. Obtained results show that the uniaxial secondary foam creep rate predicted by the FE simulations can be well captured by the modified creep model. For multiaxial secondary creep, a phenomenological elastoplastic constitutive model is extended to include the rate effect into the creep response of 3D Voronoi foams. Again, the model predictions agree well with the FE results. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [41] The antimicrobial effect of open-cell silver foams
    Asavavisithchai, S.
    Oonpraderm, A.
    Ruktanonchai, U. Rungsardthong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (04) : 1329 - 1334
  • [42] High strain extension of open-cell foams
    Mills, NJ
    Gilchrist, A
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000, 122 (01): : 67 - 73
  • [43] Developing thermal flow in open-cell foams
    Iasiello, M.
    Cunsolo, S.
    Bianco, N.
    Chiu, W. K. S.
    Naso, V.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 111 : 129 - 137
  • [44] Compressive properties of open-cell ceramic foams
    Zhang Jun-yan
    Fu Yi-ming
    Zeng Xiao-ming
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 (s453-s456): : S453 - S456
  • [45] ABSORPTION OF BENZENE BY OPEN-CELL POLYURETHANE FOAMS
    SEFTON, MV
    MANN, JL
    JOURNAL OF APPLIED POLYMER SCIENCE, 1980, 25 (05) : 829 - 839
  • [46] COMPRESSIONAL BEHAVIOR OF INKED OPEN-CELL FOAMS
    PHILLIPS, JC
    AUSLANDER, J
    POLYMER ENGINEERING AND SCIENCE, 1992, 32 (10): : 668 - 677
  • [47] On the crushing response of random open-cell foams
    Gaitanaros, Stavros
    Kyriakides, Stelios
    Kraynik, Andrew M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (19-20) : 2733 - 2743
  • [48] Capillary imbibition in open-cell monodisperse foams
    Pitois, Olivier
    Kaddami, Asmaa
    Langlois, Vincent
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 571 : 166 - 173
  • [49] Compressive properties of open-cell ceramic foams
    张俊彦
    傅衣铭
    曾晓明
    TransactionsofNonferrousMetalsSocietyofChina, 2006, (S2) : 453 - 456
  • [50] Therma conductivity of open-cell polyolefin foams
    Alvarez-Lainez, M.
    Rodriguez-Perez, M. A.
    de Saja, J. A.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2008, 46 (02) : 212 - 221